Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurochemistry 1982-May

Early stimulation of phosphatidylcholine biosynthesis during Wallerian degeneration of rat sciatic nerve.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
V Natarajan
J K Yao
P J Dyck
H H Schmid

Maneno muhimu

Kikemikali

Phospholipid metabolism was studied in rat sciatic nerve during Wallerian degeneration induced by crush injury. Portions of crushed sciatic nerve, incubated with labeled substrates, showed significantly higher phosphatidylcholine synthesis than normal nerve, prior to any measurable alterations of phospholipid composition. Maximum synthesis occurred 3 days after crush injury, at which time the metabolism of other phospholipids was unchanged. After a rapid decrease in biosynthetic activity, a second phase of enhanced phosphatidylcholine synthesis occurred, beginning 6 days after crush injury. Increased incorporation of [33P]phosphate, [2-3H]glycerol, and [Me-14C]choline indicated stimulation of de novo synthesis of phosphatidylcholine 3 days after injury. Neither base exchange reactions nor sequential methylation of ethanolamine phospholipids contributed significantly to phosphatidylcholine synthesis. Assay of certain key enzymes under optimal conditions in subcellular fractions of sciatic nerve revealed higher activities of cholinephosphate cytidyltransferase, choline phosphotransferase, and acyl-CoA:lysophosphatidylcholine acyltransferase in injured nerve, while choline kinase activity remained unchanged. This indicates that stimulation of phosphatidylcholine synthesis occurs via the cytidine nucleotide pathway, as well as by increased acylation of lysophosphatidylcholine. Although the cause of stimulated phosphatidylcholine synthesis remains unexplained, it is possible that trace amounts of lysophospholipids or other metabolites produced by injury-enhanced phospholipase activity may be responsible.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge