Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2018-Aug

Effect of cadmium on morphometric traits, antioxidant enzyme activity and phytochelatin synthase gene expression (SoPCS) of Saccharum officinarum var. cp48-103 in vitro.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Z Yousefi
M Kolahi
A Majd
P Jonoubi

Maneno muhimu

Kikemikali

Cadmium is an important environmental pollutant which genetically, physiologically and biochemically affects the cell. Phytochelatins (PC) are involved in one of the phytoremediation mechanisms, in which they are able to bind heavy metals, such as cadmium. The objective of this study was to evaluate morphometric, antioxidant enzyme activity, and SoPCS gene expression in sugarcane growing under cadmium stress. After propagation, samples were cultured in triplicate for 14 days in modified MS medium containing CdCl2 (100, 250, 500 µmol). The morphometric traits, pigments, quantity and antioxidant enzyme activity were studied in treated plantlets. SoPCS gene expression was analyzed by qRT-PCR. Growth traits decreased following cadmium treatment. The amount of Chla, Chlb and ChlT decreased in treated samples, whereas carotenoids increased significantly. A rapid increase in antioxidant enzyme activity was detected. Enhanced SoPCS gene expression was observed in treated roots, whereas gene expression pattern in leaves was irregular. In conclusion, cadmium decreases the photosynthetic mechanism and growth rate in sugarcane. Antioxidative enzymes and SoPCS gene expression were significantly unregulated in sugarcane roots compared to the leaves. Cadmium concentration in shoots and roots of sugarcane significantly increased. The management of cadmium bioaccumulation in non-edible tissues of sugarcane such as leaves and roots that are sometimes burned after harvest can be applied for environmental protection.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge