Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurophysiology 1994-Mar

Effects of anoxia on rat midbrain dopamine neurons.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
N B Mercuri
A Bonci
S W Johnson
F Stratta
P Calabresi
G Bernardi

Maneno muhimu

Kikemikali

1. Dopamine-containing neurons of the rat midbrain were recorded intracellularly in vitro. Anoxia (2-5 min) caused reversible membrane hyperpolarization (4-25 mV), which blocked spontaneous firing of action potentials. Under voltage clamp, anoxia produced an outward current (100-1,000 pA) associated with an increase in the apparent input conductance. 2. The mean reversal potential of the anoxia-induced response at 2.5 and 12.5 mM [K+] was -86 and -66 mV, respectively. 3. The effect of anoxia was not blocked by tetrodotoxin (TTX), saclofen, (-)sulpiride, or strychnine. Superfusate containing low calcium (0.5 mM CaCl2 and 10 mM MgCl2 or 0.5-1 mM CaCl2 and 1 mM CoCl2) or low sodium (25-40% of control) reduced the anoxia-induced outward current. 4. Extracellular barium (0.1-1 mM) blocked the anoxia-induced hyperpolarization/outward current. Other K+ channel blockers (tetraethylammonium, apamin, quinine, and glibenclamide) failed to reduce anoxia-induced current. 5. When the dopamine-containing neurons were loaded with cesium (1-2 mM), anoxia caused a reversible membrane depolarization and a block of the firing activity. This depolarization was voltage dependent; it was decreased or blocked by the hyperpolarization of the membrane. 6. Perfusion of the cells with 0.5-1 microM TTX did not affect the membrane depolarization/inward current caused by anoxia. These were also present when the cells were treated with the excitatory amino acid receptor antagonists D,L-2-amino-5-phosphonovalerate (APV) (30 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 microM). 7. The exposure of the neurons with low-sodium, low-calcium solutions reversibly reduced the depolarizing/inward effects of anoxia.(ABSTRACT TRUNCATED AT 250 WORDS)

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge