Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2013-May

First Report of Laurel Wilt, Caused by Raffaelea lauricola, on Sassafras (Sassafras albidum) in Alabama.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
C Bates
S Fraedrich
T Harrington
R Cameron
R Menard
G Best

Maneno muhimu

Kikemikali

Laurel wilt, caused by Raffaelea lauricola, a fungal symbiont of the redbay ambrosia beetle, Xyleborus glabratus, is responsible for extensive mortality of native redbays (Persea borbonia and P. palustris) in the coastal plains of the southeastern United States (1). The wilt also affects the more widespread sassafras, Sassafras albidum, particularly in areas where diseased redbays are common and populations of X. glabratus are high. Because sassafras stems were thought to lack chemicals that are attractive to the beetle, and sassafras tends to be widely scattered in forests, it was believed that the advance of the laurel wilt epidemic front might slow once it reached the edge of the natural range of redbay, which is restricted to the coastal plains of the Gulf and Atlantic Coasts (2). In July and August of 2011, wilt-like symptoms (i.e., wilted and dead leaves, and streaks of black discoloration in the xylem) were observed on 1 to 10 sassafras trees (15 to 23 cm diameter; 6 to 9 m height) at each of three locations, which were approximately 6 km from one another in Marengo Co., Alabama. Samples of the discolored wood from five trees were plated on malt agar amended with cycloheximide and streptomycin (CSMA), and a fungus morphologically identical to R. lauricola was isolated from each tree (1). For confirmation, a portion of the large subunit (28S) of the rDNA region of three of the isolates was sequenced (3); in each case, the sequence matched exactly that of other isolates of R. lauricola (EU123077) from the United States. Symptomatic trees were found at all three sites when revisited in April 2012, and approximately 20 sassafras trees in various stages of wilt were observed at one location, where only one diseased tree had been noted in 2011. Bolts were cut from the main stem of a symptomatic tree, and eggs, larvae, and adults of X. glabratus were commonly found in tunnels, and R. lauricola was isolated from the discolored xylem. Three container-grown sassafras saplings (mean height 193 cm, mean diameter 2.1 cm at groundline) were inoculated as previously described (1) with conidia (~600,000) from an isolate of R. lauricola. Three additional sassafras saplings were inoculated with sterile, deionized water, and all plants were placed in a growth chamber at 25°C with a 15-h photoperiod. Inoculated plants began to exhibit wilt symptoms within 14 days, and at 30 days all inoculated plants were dead and xylem discoloration was observed. Control plants appeared healthy and did not exhibit xylem discoloration. Pieces of sapwood from 15 cm above the inoculation points were plated on CSMA, and R. lauricola was recovered from all wilted plants but not from control plants. This is the first record of laurel wilt in Alabama and is significant because the disease appears to be spreading on sassafras in an area where redbays have not been recorded (see http://www.floraofalabama.org ). The nearest previously documented case of laurel wilt is on redbay and sassafras in Jackson Co., Mississippi (4), approximately 160 km to the south. The exact source of the introduction of X. glabratus and R. lauricola into Marengo Co. is not known. The vector may have been transported into the area with storms, moved with infested firewood, or shipped with infested timber by companies that supply mills in the area. References: (1) S. Fraedrich et al. Plant Dis. 92:215, 2008. (2) J. Hanula et al. Econ. Ent. 101:1276, 2008. (3) T. Harrington et al. Mycotaxon 111:337, 2010. (4) J. Riggins et al. Plant Dis. 95:1479, 2011.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge