Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annual Review of Biochemistry 2005

From protein synthesis to genetic insertion.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Paul Zamecnik

Maneno muhimu

Kikemikali

In 1946, (14)C-cyanide made its appearance as an offshoot of the Atomic Energy Program. Our colleague Robert Loftfield built it into (14)C-alanine by the Strecker synthesis, and a lusty program directed toward uncovering the unknown mechanism of protein synthesis grew out of this beginning. The necessity for an undiscovered series of steps and enzymes was soon evident. A cell free system was developed, and a succession of components necessary for this new pathway tumbled out. ATP dependence, amino acid activation, the ribosome as the site of polypeptide formation, discovery of tRNA as the translation molecule linking the gene and protein sequence, and GTP as the essential energy ingredient in peptide chain extension all appeared from our laboratory within the next decade. A little later the AP(4)N family, whose functions remain imperfectly defined, of intracellular molecules was discovered. Isolation of specific species of RNA became a high priority, and we sequenced a small segment of the 3' end of the Rous sarcoma virus, just inside the poly(A) tail, at the same time the Gilbert group at Harvard was sequencing the 5' end. The sequence identity and polarity of the two ends suggested a circular intermediate in replication and predicted correctly that a synthetic antisense oligonucleotide targeted against this sequence might be a specific inhibitor of replication. More recently, we have evolved a technique that appears to achieve a trinucleotide insertion into tissue culture cells bearing a specific Delta508 mRNA triplet deletion, resulting in phenotypic reversion in the tissue culture.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge