Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Journal 2012-Aug

Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Mariette Bedhomme
Mattia Adamo
Christophe H Marchand
Jérémy Couturier
Nicolas Rouhier
Stéphane D Lemaire
Mirko Zaffagnini
Paolo Trost

Maneno muhimu

Kikemikali

Plants contain both cytosolic and chloroplastic GAPDHs (glyceraldehyde-3-phosphate dehydrogenases). In Arabidopsis thaliana, cytosolic GAPDH is involved in the glycolytic pathway and is represented by two differentially expressed isoforms (GapC1 and GapC2) that are 98% identical in amino acid sequence. In the present study we show that GapC1 is a phosphorylating NAD-specific GAPDH with enzymatic activity strictly dependent on Cys(149). Catalytic Cys(149) is the only solvent-exposed cysteine of the protein and its thiol is relatively acidic (pK(a)=5.7). This property makes GapC1 sensitive to oxidation by H(2)O(2), which appears to inhibit enzyme activity by converting the thiolate of Cys(149) (-S-) into irreversible oxidized forms (-SO(2)(-) and -SO(3)(-)) via a labile sulfenate intermediate (-SO(-)). GSH (reduced glutathione) prevents this irreversible process by reacting with Cys(149) sulfenates to give rise to a mixed disulfide (Cys(149)-SSG), as demonstrated by both MS and biotinylated GSH. Glutathionylated GapC1 can be fully reactivated either by cytosolic glutaredoxin, via a GSH-dependent monothiol mechanism, or, less efficiently, by cytosolic thioredoxins physiologically reduced by NADPH:thioredoxin reductase. The potential relevance of these findings is discussed in the light of the multiple functions of GAPDH in eukaryotic cells (e.g. glycolysis, control of gene expression and apoptosis) that appear to be influenced by the redox state of the catalytic Cys(149).

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge