Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Nutrition 2005-Dec

Green tea polyphenol epigallocatechin-3 gallate (EGCG) affects gene expression of breast cancer cells transformed by the carcinogen 7,12-dimethylbenz[a]anthracene.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Shangqin Guo
Sanghwa Yang
Chad Taylor
Gail E Sonenshein

Maneno muhimu

Kikemikali

Since the 1980s, the incidence of late-onset breast cancer has been increasing in the United States. Known risk factors, such as genetic modifications, have been estimated to account for approximately 5 to 10% of breast cancer cases, and these tend to be early onset. Thus, exposure to and bioaccumulation of ubiquitous environmental chemicals, such as polycyclic aromatic hydrocarbons (PAHs), have been proposed to play a role in this increased incidence. Treatment of female Sprague-Dawley rats with a single dose of the PAH 7,12-dimethylbenz[a]anthracene (DMBA) induces mammary tumors in approximately 90 to 95% of test animals. We showed previously that female rats treated with DMBA and given green tea as drinking fluid displayed significantly decreased mammary tumor burden and invasiveness and a significantly increased latency to first tumor. Here we used cDNA microarray analysis to elucidate the effects of the green tea polyphenol epigallocatechin-3 gallate (EGCG) on the gene expression profile in a DMBA-transformed breast cancer cell line. RNA was isolated, in quadruplicate, from D3-1 cells treated with 60 mug/mL EGCG for 2, 7, or 24 h and subjected to analysis. Semiquantitative RT-PCR and Northern blot analyses confirmed the changes in the expression of 12 representative genes seen in the microarray experiments. Overall, our results documented EGCG-altered expression of genes involved in nuclear and cytoplasmic transport, transformation, redox signaling, response to hypoxia, and PAHs.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge