Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimie 2010-Jul

Heterologous expression of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Triticum aestivum and Arabidopsis thaliana.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Claudia V Piattoni
Sebastián P Rius
Diego F Gomez-Casati
Sergio A Guerrero
Alberto A Iglesias

Maneno muhimu

Kikemikali

Non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) plays a key metabolic role in higher plants. Purification to homogeneity of enzymes found in relatively low abundance in plants represents a major technical challenge that can be solved by molecular gene cloning and heterologous expression. To apply this strategy to np-Ga3PDHase we performed the cloning of the gapN gene from Arabidopsis thaliana and Triticum aestivum, followed by the heterologous expression in Escherichia coli by two different strategies. Soluble expression of the Arabidopsis enzyme in the pET32c+ vector required a chaperone co-expression system (pGro7). The system using E. coli BL21-CodonPlus cells and the pRSETB vector was successful for expression of a soluble His(6)-taged recombinant wheat enzyme producing 2.5 mg of electrophoretically pure protein per liter of cell culture after a single chromatographic purification step. Both systems were effective for the expression of functional plant np-Ga3PDHases, however the expression of the Arabidopsis enzyme in pRSETB was affordable but not as optimal as for the wheat protein. This would be associated with a different codon usage preference between this specific plant and E. coli. Considering the relevant role played by np-Ga3PDHase in plant metabolism, it is experimentally valuable the development of a procedure to obtain adequate amounts of highly purified enzyme, which envisages the viability to perform studies of structure-to-function relationships to better understand the enzyme kinetics and regulation, as well as carbon and energy metabolism in higher plants.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge