Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2018-Jun

Hexokinase 2 is targetable for HK1 negative, HK2 positive tumors from a wide variety of tissues of origin.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Shili Xu
Arthur Catapang
Hanna M Doh
Nicholas A Bayley
Jason T Lee
Daniel Braas
Thomas G Graeber
Harvey R Herschman

Maneno muhimu

Kikemikali

Although absent in most adult tissues, hexokinase 2 (HK2) is expressed in a majority of tumors and contributes to increased glucose consumption and to in vivo tumor 18F-FDG PET signaling. Methods: Both HK2 knockdown and knockout approaches were used to investigate the role of HK2 in cancer cell proliferation, in vivo xenograft tumor progression and 18F-FDG tumor accumulation. BioProfiler analysis monitored cell culture glucose consumption and lactate production; 18F-FDG PET/CT monitored in vivo tumor glucose accumulation. Cancer Cell Line Encyclopedia data were analyzed for HK1 and HK2 expression. Results: Neither cell proliferation in culture nor xenograft tumor progression are inhibited by HK2 knockdown or knockout in cancer cells that express HK1 and HK2. However, cancer subsets from a variety of tissues of origin express only HK2, but not HK1. In contrast to HK1+HK2+ cancers, HK2 knockdown in HK1-HK2+ cancer cells results in inhibition of cell proliferation, colony formation and xenograft tumor progression. Moreover, HK1KOHK2+ cancer cells are susceptible to HK2 inhibition, in contrast to their isogenic HK1+HK2+ parental cells. Conclusion: HK1 and HK2 expression are redundant in tumors; either can provide sufficient aerobic glycolysis for tumor growth; despite a reduction in 18F-FDG PET signal. Therapeutic HK2 inhibition is likely to be restricted to HK1-HK2+ tumor subsets, but stratification of tumors that express HK2, but not HK1, should identify tumors treatable with emerging HK2 specific inhibitors.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge