Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 1984-Aug

Maturation of catalase precursor proceeds to a different extent in glyoxysomes and leaf peroxisomes of pumpkin cotyledons.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
J Yamaguchi
M Nishimura
T Akazawa

Maneno muhimu

Kikemikali

As an approach to study the mechanism of the microbody transition (glyoxysomes to leaf peroxisomes) in greening pumpkin cotyledons, catalase molecules were purified from the two different types of microbody and their structural properties were compared. The purified glyoxysomal catalase was found to consist of four identical subunits (55 kDa), whereas the leaf peroxisomal catalase contains two different forms of monomeric subunit (55 and 59 kDa). These different catalase species cross-reacted with the rabbit antibody raised against the glyoxysomal enzyme. During gel filtration on an Ultrogel AcA 34 column, the leaf peroxisomal 55-kDa polypeptide eluted slightly faster than the leaf peroxisomal 59-kDa polypeptide. The profile of catalase activities exactly paralleled the elution pattern of the 55-kDa molecules, which indicated that the 59-kDa polypeptide was enzymically inactive. Peptide mapping analysis using Staphylococcus aureus protease V8 showed that the glyoxysomal 55-kDa polypeptide was identical to the leaf peroxisomal 55-kDa species, whereas the leaf peroxisomal 59-kDa polypeptide had a different primary structure from the 55-kDa polypeptide. In an in vitro translation system directed by mRNA isolated from etiolated and green cotyledons, glyoxysomal and leaf peroxisomal catalases were synthesized as the identical 59-kDa polypeptide. From peptide mapping analysis, the in vitro-translated 59-kDa polypeptide was found to have a nearly identical primary structure to that of the leaf peroxisomal 59-kDa species. In vivo pulse-chase labeling experiments using etiolated cotyledons showed the conversion of the 59-kDa polypeptide to the 55-kDa molecular species. The overall results strongly indicate that the 59-kDa polypeptide is a precursor form of catalase in pumpkin cotyledons.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge