Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Membrane Biology 1989-Oct

Membrane potential, anion and cation conductances in Ehrlich ascites tumor cells.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
I H Lambert
E K Hoffmann
F Jørgensen

Maneno muhimu

Kikemikali

The fluorescence intensity of the dye 1,1'-dipropylox-adicarbocyanine (DiOC3-(5] has been measured in suspensions of Ehrlich ascites tumor cells in an attempt to monitor their membrane potential (Vm) under different ionic conditions, after treatment with cation ionophores and after hypotonic cell swelling. Calibration is performed with gramicidin in Na+-free K-/choline-media, i.e., standard medium in which NaCl is replaced by KCl and cholineCl and where the sum of potassium and choline is kept constant at 155 mM. Calibration by the valinomycin "null point" procedure described by Laris et al. (Laris, P.C., Pershadsingh, A., Johnstone, R.M., 1976, Biochim, Biophys. Acta 436:475-488) is shown to be valid only in the presence of the Cl- -channel blocker indacrinone (MK196). Distribution of the lipophilic anion SCN- as an indirect estimation of the membrane potential is found not to be applicable for the fast changes in Vm reported in this paper. Incubation with DiOC3-(5) for 5 min is demonstrated to reduce the Cl permeability by 26 +/- 5% and the NO3- permeability by 15 +/- 2%, while no significant effect of the probe could be demonstrated on the K+ permeability. Values for Vm, corrected for the inhibitory effect of the dye on the anion conductance, are estimated at -61 +/- 1 mV in isotonic standard NaCl medium, -78 +/- 3 mV in isotonic Na+-free choline medium and -46 +/- 1 mV in isotonic NaNO3 medium. The cell membrane is depolarized by addition of the K+ channel inhibitor quinine and it is hyperpolarized when the cells are suspended in Na+-free choline medium, indicating that Vm is generated partly by potassium and partly by sodium diffusion. Ehrlich cells have previously been shown to be more permeable to nitrate than to chloride. Substituting NO3- for all cellular and extracellular Cl- leads to a depolarization of the membrane, demonstrating that Vm is also generated by the anions and that anions are above equilibrium. Taking the previously demonstrated single-file behavior of the K+ channels into consideration, the membrane conductances in Ehrlich cells are estimated at 10.4 microS/cm2 for K+, 3.0 microS/cm2 for Na+, 0.6 microS/cm2 for Cl- and 8.7 microS/cm2 for NO3-. Addition of the Ca2+-ionophore A23187 results in net loss of KCl and a hyperpolarization of the membrane, indicating that the K+ permeability exceeds the Cl- permeability also after the addition of A23187. The K+ and Cl- conductances in A23187-treated Ehrlich cells are estimated at 134 and 30 microS/cm2, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge