Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmaceutical and Biomedical Analysis 2014-Apr

Metabolites identification of harmane in vitro/in vivo in rats by ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Shuping Li
Wei Liu
Liang Teng
Xuemei Cheng
Zhengtao Wang
Changhong Wang

Maneno muhimu

Kikemikali

Harmane, a β-carboline alkaloid with a wide spectrum of pharmacological activities, is naturally present in the human diet, in numerous foodstuffs and in hallucinogenic plants such as Peganum harmala, Banisteriopsis caapi and Tribulus terrestris. However, the precise metabolic fate of harmane remains unknown. In order to know whether harmane is extensively metabolized, a rapid and sensitive method using ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC/ESI-QTOF-MS) was used to analyze the metabolic profile of harmane in vitro and in vivo in rats. A total of 21 metabolites were identified from the rat liver microsomes and rat liver S9 (9), rat urine (11), feces (16), bile (16), and plasma (10) after a single oral administration of harmane using MetaboLynx™ and MassFragment ™ software tools. It indicated that the biliary and faecal clearance were the major excretion routes for harmane as well as its metabolites. The specific CLogP values combined with different acidic and alkaline mobile phase were helpful and useful for distinguishing N-oxidation and monohydroxylation metabolites. The metabolic transformation pathways of harmane included monohydroxylation, dihydroxylation, N-oxidation, O-glucuronide conjugation, O-sulphate conjugation, and glutathione conjugation. In conclusion, this study showed an insight into the metabolism of harmane.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge