Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemosphere 2018-Nov

Monitoring the stress resistance of Pennisetum purpureum in Pb (II) contaminated soil bioaugmented with Enterobacter cloacae as defence strategy.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Anamika Das
Jabez W Osborne

Maneno muhimu

Kikemikali

Lead (Pb) is reported to have negative effects on the biogeochemical behaviour of the plant growth. In recent years, the significance of rhizoremediation of heavy metals has been of great focus aiding in the development rates of plants under stressed conditions. The present study evaluated the physio-biochemical response of Pennisetum purpureum to different concentrations of Pb (II) viz., 0, 50, 100 and 150 mg kg-1 in the form of lead (II) nitrate. The pre-characterized PGPR strain, Enterobacter cloacae - KU598849 was used to augment the plants. After Pb exposure for 45 d, parameters such as plant growth, lead accumulation, H2O2 content, MDA content, protein, proline content and antioxidant enzymatic activities were quantified. Results illustrated that increasing Pb concentration reduced the early growth, metal accumulation, protein content and affected physio-biochemical changes by causing oxidative damage in plants. Upon augmentation of the bacterial inoculum, the plants significantly resisted the toxic effects of Pb. Increased Pb bioaccumulation pattern was recorded in roots than shoots, were highest uptake was found to be 72 mg kg-1 dry weight when exposed to 150 mg kg-1 Pb concentration. Lead supplementation increased the activities of malonylaldehyde (MDA), superoxide dismutase (SOD), peroxidase (POX), ascorbate peroxidase (APX) and catalase (CAT) in P. purpureum. Bacterial bioaugmentation resulted in the reduction of the oxidative stress aided with reduced antioxidant enzyme activities indicating the minimization of the damages under stress.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge