Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell Reports 2014-Nov

Overexpression of Camellia sinensis H1 histone gene confers abiotic stress tolerance in transgenic tobacco.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Weidong Wang
Yuhua Wang
Yulin Du
Zhen Zhao
Xujun Zhu
Xin Jiang
Zaifa Shu
Ying Yin
Xinghui Li

Maneno muhimu

Kikemikali

CONCLUSIONS

Overexpression of CsHis in tobacco promoted chromatin condensation, but did not affect the phenotype. It also conferred tolerance to low-temperature, high-salinity, ABA, drought and oxidative stress in transgenic tobacco. H1 histone, as a major structural protein of higher-order chromatin, is associated with stress responses in plants. Here, we describe the functions of the Camellia sinensis H1 Histone gene (CsHis) to illustrate its roles in plant responses to stresses. Subcellular localization and prokaryotic expression assays showed that the CsHis protein is localized in the nucleus, and its molecular size is approximately 22.5 kD. The expression levels of CsHis in C. sinensis leaves under various conditions were investigated by qRT-PCR, and the results indicated that CsHis was strongly induced by various abiotic stresses such as low-temperature, high-salinity, ABA, drought and oxidative stress. Overexpression of CsHis in tobacco (Nicotiana tabacum) promoted chromatin condensation, while there were almost no changes in the growth and development of transgenic tobacco plants. Phylogenetic analysis showed that CsHis belongs to the H1C and H1D variants of H1 histones, which are stress-induced variants and not the key variants required for growth and development. Stress tolerance analysis indicated that the transgenic tobacco plants exhibited higher tolerance than the WT plants upon exposure to various abiotic stresses; the transgenic plants displayed reduced wilting and senescence and exhibited greater net photosynthetic rate (Pn), stomatal conductance (Gs) and maximal photochemical efficiency (Fv/Fm) values. All the above results suggest that CsHis is a stress-induced gene and that its overexpression improves the tolerance to various abiotic stresses in the transgenic tobacco plants, possibly through the maintenance of photosynthetic efficiency.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge