Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2011-Dec

Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Johannes Meiser
Sivasenkar Lingam
Petra Bauer

Maneno muhimu

Kikemikali

Understanding iron (Fe) sensing and regulation is important for targeting key genes for important nutritional traits like Fe content. The basic helix-loop-helix transcription factor FIT (for FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) controls Fe acquisition genes in dicot roots. Posttranscriptional regulation of transcription factors allows rapid adaptation to cellular changes and was also described for FIT. However, the mechanisms behind this regulation of FIT were for a long time not known. Here, we studied the posttranscriptional control mechanisms of FIT in Arabidopsis (Arabidopsis thaliana) and identified nitric oxide as a stabilizing stimulus for FIT protein abundance. Using cycloheximide, we confirmed that the level of FIT protein was regulated by way of protein turnover in wild-type and hemagglutinin-FIT plants. Upon cycloheximide treatment, FIT activity was hardly compromised, since Fe deficiency genes like IRON-REGULATED TRANSPORTER1 and FERRIC REDUCTASE OXIDASE2 were still inducible by Fe deficiency. A small pool of "active" FIT was sufficient for the induction of Fe deficiency downstream responses. Nitric oxide inhibitors caused a decrease of FIT protein abundance and, in the wild type, also a decrease in FIT activity. This decrease of FIT protein levels was reversed by the proteasomal inhibitor MG132, suggesting that in the presence of nitric oxide FIT protein was less likely to be a target of proteasomal degradation. Independent of FIT transcription, FIT protein stability and FIT protein activity, therefore, were targets of control mechanisms in response to Fe and nitric oxide. We summarize our results in a model that explains the different steps of FIT regulation integrating the plant signals that control FIT.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge