Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biological and Pharmaceutical Bulletin 1997-Jan

Production of plant non-protein amino acids by recombinant enzymes of sequential biosynthetic reactions in bacteria.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
K Saito
N Kimura
F Ikegami
M Noji

Maneno muhimu

Kikemikali

We constructed the co-expression vector, pFK4, in which two cDNAs encoding serine acetyltransferase (SATase) and beta-(pyrazol-1-yl)-L-alanine/L-cysteine synthase (beta-PA/CSase) from Citrullus vulgaris (watermelon) were over-expressed under the transcriptional control of T7 promoter in Escherichia coli. Accumulation of both SATase and beta-PA/CSase in soluble extracts of E. coli was confirmed by immunoblotting. The high enzymatic activities of SATase and L-cysteine synthase (CSase) were detected in cell-free extracts of E. coli carrying pFK4. The activities of the formation of beta-PA and L-mimosine, plant non-protein amino acids, from O-acetyl-L-serine (OAS) and the precursor heterocyclic compounds, pyrazole and 3,4-dihydroxypyridine, were also found in the extracts. beta-PA was also produced in vivo from L-serine and pyrazole as precursors by E. coli cells transformed with pFK4. beta-PA was accumulated mainly in the extra-cellular culture medium. The pronounced accumulation of L-cysteine and L-methionine was observed in the cells transformed with pFK4. Additionally, we also constructed vectors which carried chimeric genes encoding fusion proteins of SATase and beta-PA/CSase. However, the fusion proteins tended to form insoluble inclusion bodies and thus to exhibit only weak enzymatic activities. The successful results of pFK4 shows the way to create a new sequential biosynthetic pathway of plant specific amino acids in bacterial cells by means of recombinant DNA technology.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge