Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Thrombosis and Haemostasis 2017-Nov

Receptor homodimerization plays a critical role in a novel dominant negative P2RY12 variant identified in a family with severe bleeding.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Stuart J Mundell
David Rabbolini
Sara Gabrielli
Qiang Chen
Riyaad Aungraheeta
James L Hutchinson
Tatjana Kilo
Joel Mackay
Christopher M Ward
William Stevenson

Maneno muhimu

Kikemikali

Essentials Three dominant variants for the autosomal recessive bleeding disorder type-8 have been described. To date, there has been no phenotype/genotype correlation explaining their dominant transmission. Proline plays an important role in P2Y12R ligand binding and signaling defects. P2Y12R homodimer formation is critical for the receptor function and signaling.

CONCLUSIONS

Background Although inherited platelet disorders are still underdiagnosed worldwide, advances in molecular techniques are improving disease diagnosis and patient management. Objective To identify and characterize the mechanism underlying the bleeding phenotype in a Caucasian family with an autosomal dominant P2RY12 variant. Methods Full blood counts, platelet aggregometry, flow cytometry and western blotting were performed before next-generation sequencing (NGS). Detailed molecular analysis of the identified variant of the P2Y12 receptor (P2Y12R) was subsequently performed in mammalian cells overexpressing receptor constructs. Results All three referred individuals had markedly impaired ADP-induced platelet aggregation with primary wave only, despite normal total and surface P2Y12R expression. By NGS, a single P2RY12:c.G794C substitution (p.R265P) was identified in all affected individuals, and this was confirmed by Sanger sequencing. Mammalian cell experiments with the R265P-P2Y12R variant showed normal receptor surface expression versus wild-type (WT) P2Y12R. Agonist-stimulated R265P-P2Y12R function (both signaling and surface receptor loss) was reduced versus WT P2Y12R. Critically, R265P-P2Y12R acted in a dominant negative manner, with agonist-stimulated WT P2Y12R activity being reduced by variant coexpression, suggesting dramatic loss of WT homodimers. Importantly, platelet P2RY12 cDNA cloning and sequencing in two affected individuals also revealed three-fold mutant mRNA overexpression, decreasing even further the likelihood of WT homodimer formation. R265 located within extracellular loop 3 (EL3) is one of four residues that are important for receptor functional integrity, maintaining the binding pocket conformation and allowing rotation following ligand binding. Conclusion This novel dominant negative variant confirms the important role of R265 in EL3 in the functional integrity of P2Y12R, and suggests that pathologic heterodimer formation may underlie this family bleeding phenotype.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge