Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Neuropsychopharmacology 2014-Sep

Repeated treatment with electroconvulsive seizures induces HDAC2 expression and down-regulation of NMDA receptor-related genes through histone deacetylation in the rat frontal cortex.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Hong Geun Park
Hyun Sook Yu
Soyoung Park
Yong Min Ahn
Yong Sik Kim
Se Hyun Kim

Maneno muhimu

Kikemikali

The enzymatic activity of histone deacetylases (HDACs) leads to a histone deacetylation-mediated condensed chromatic structure, resulting in transcriptional repression, which has been implicated in the modifications of neural circuits and behaviors. Repeated treatment with electroconvulsive seizure (ECS) induces changes in histone acetylation, expression of various genes, and intrabrain cellular changes, including neurogenesis. In this study, we examined the effects of repeated ECS on the expression of class I HDACs and related changes in histone modifications and gene expression in the rat frontal cortex. Ten days of repeated ECS treatments (E10X) up-regulated HDAC2 expression at the mRNA and protein levels in the rat frontal cortex compared with sham-treated controls; this was evident in the nuclei of neuronal cells in the prefrontal, cingulate, orbital, and insular cortices. Among the known HDAC2 target genes, mRNA expression of N-methyl-d-aspartate (NMDA) receptor signaling-related genes, including early growth response-1 (Egr1), c-Fos, glutamate receptor, ionotropic, N-methyl d-aspartate 2A (Nr2a), Nr2b, neuritin1 (Nrn1), and calcium/calmodulin-dependent protein kinase II alpha (Camk2α), were decreased, and the histone acetylation of H3 and/or H4 proteins was also reduced by E10X. Chromatin immunoprecipitation analysis revealed that HDAC2 occupancy in the promoters of down-regulated genes was increased significantly. Moreover, administration of sodium butyrate, a HDAC inhibitor, during the course of E10X ameliorated the ECS-induced down-regulation of genes in the rat frontal cortex. These findings suggest that induction of HDAC2 by repeated ECS treatment could play an important role in the down-regulation of NMDA receptor signaling-related genes in the rat frontal cortex through histone modification.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge