Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Respiratory Physiology and Neurobiology 2012-Mar

Respiratory control and sternohyoid muscle structure and function in aged male rats: decreased susceptibility to chronic intermittent hypoxia.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
J Richard Skelly
Deirdre Edge
Christine M Shortt
James F X Jones
Aidan Bradford
Ken D O'Halloran

Maneno muhimu

Kikemikali

Obstructive sleep apnoea syndrome (OSAS) is a common respiratory disorder characterized by chronic intermittent hypoxia (CIH). We have shown that CIH causes upper airway muscle dysfunction in the rat due to oxidative stress. Ageing is an independent risk factor for the development of OSAS perhaps due to respiratory muscle remodelling and increased susceptibility to hypoxia. We sought to examine the effects of CIH on breathing and pharyngeal dilator muscle structure and function in aged rats. Aged (18-20 months), male Wistar rats were exposed to alternating cycles of normoxia and hypoxia (90 s each; F(I)O(2)=5% O(2) at nadir) or sham treatment for 8h/day for 9 days. Following CIH exposure, breathing was assessed by whole-body plethysmography. In addition, sternohyoid muscle contractile and endurance properties were examined in vitro. Muscle fibre type and cross-sectional area, and the activity of key oxidative and glycolytic enzymes were determined. CIH had no effect on basal breathing or ventilatory responses to hypoxia or hypercapnia. CIH did not alter succinate dehydrogenase or glycerol phosphate dehydrogenase enzyme activities, myosin heavy chain fibre areal density or cross-sectional area. Sternohyoid muscle force and endurance were unaffected by CIH exposure. Since we have established that this CIH paradigm causes sternohyoid muscle weakness in adult male rats, we conclude that aged rats have decreased susceptibility to CIH-induced stress. We suggest that structural remodelling with improved hypoxic tolerance in upper airway muscles may partly compensate for impaired neural regulation of the upper airway and increased propensity for airway collapse in aged mammals.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge