Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2019-Feb

RrGT1, a key gene associated with anthocyanin biosynthesis, was isolated from Rosa rugosa and identified via overexpression and VIGS.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Xiaoming Sui
Mingyuan Zhao
Xu Han
Lanyong Zhao
Zongda Xu

Maneno muhimu

Kikemikali

At present, research on the flower color of Rosa rugosa requires very innovative and practical studies. Glycosylation plays an important role in increasing the stability and solubility of anthocyanins in plants. In this study, a gene with a full-length cDNA of 1161 bp encoding 386 amino acids, designated RrGT1 (MK034140), was isolated from the flowers of R. rugosa 'Zizhi' and then functionally characterized. Sequence alignment revealed that the coding regions of RrGT1 were highly specific among different species but still contained typical conserved amino acid residues that are crucial for RrGT1 enzyme activity. RrGT1 transcripts were detected in various tissues of R. rugosa 'Zizhi' and Rosa davurica, and their expression patterns corresponded with the accumulation of anthocyanins. Additionally, the in vivo function of RrGT1 was investigated via its overexpression in Arabidopsis thaliana. Transgenic Arabidopsis plants expressing RrGT1 regained red color pigmentation of their leaves and flower stems, indicating that RrGT1 could encode a functional glycosyltransferase (GT) protein for anthocyanin biosynthesis and could function in other species. The functional verification of RrGT1 for anthocyanin biosynthesis in R. rugosa was performed via virus-induced gene silencing (VIGS). This was the first time that a VIGS system was developed for use with perennial Rosa plants grown naturally in the field as experimental materials to study a key color-controlling gene in Rosa. When the RrGT1 gene was silenced, the Rosa plants displayed a pale petal color phenotype. The detection results showed that the expression of the endogenous RrGT1 gene was significantly downregulated while the six key structural genes in its upstream were normally expressed, and the contents of all anthocyanins also decreased significantly. Therefore, we speculated that glycosylation of RrGT1 plays a crucial role in anthocyanin biosynthesis in R. rugosa.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge