Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Virus Research 2017-Oct

Sodium phenylbutyrate abrogates African swine fever virus replication by disrupting the virus-induced hypoacetylation status of histone H3K9/K14.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Gonçalo Frouco
Ferdinando B Freitas
Carlos Martins
Fernando Ferreira

Maneno muhimu

Kikemikali

African swine fever virus (ASFV) causes a highly lethal disease in swine for which neither a vaccine nor treatment are available. Recently, a new class of drugs that inhibit histone deacetylases enzymes (HDACs) has received an increasing interest as antiviral agents. Considering studies by others showing that valproic acid, an HDAC inhibitor (HDACi), blocks the replication of enveloped viruses and that ASFV regulates the epigenetic status of the host cell by promoting heterochromatinization and recruitment of class I HDACs to viral cytoplasmic factories, the antiviral activity of four HDACi against ASFV was evaluated in this study. Results showed that the sodium phenylbutyrate fully abrogates the ASFV replication, whereas the valproic acid leads to a significant reduction of viral progeny at 48h post-infection (-73.9%, p=0.046), as the two pan-HDAC inhibitors tested (Trichostatin A: -82.2%, p=0.043; Vorinostat: 73.9%, p=0.043). Further evaluation showed that protective effects of NaPB are dose-dependent, interfering with the expression of late viral genes and reversing the ASFV-induced histone H3 lysine 9 and 14 (H3K9K14) hypoacetylation status, compatible to an open chromatin state and possibly enabling the expression of host genes non-beneficial to infection progression. Additionally, a synergic antiviral effect was detected when NaPB is combined with an ASFV-topoisomerase II poison (Enrofloxacin). Altogether, our results strongly suggest that cellular HDACs are involved in the establishment of ASFV infection and emphasize that further in vivo studies are needed to better understand the antiviral activity of HDAC inhibitors.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge