Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
JAMA Otolaryngology - Head and Neck Surgery 2013-Jun

The fixation effect of a silk fibroin-bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Jung Min Lee
Ji Heui Kim
Ok Joo Lee
Chan Hum Park

Maneno muhimu

Kikemikali

OBJECTIVE

Bioresorbable fixation systems have been popular for the treatment of facial fractures. However, their mechanical properties are uncertain and complications have been reported. To overcome these problems, we developed a bioresorbable fixation plate using a composite of silk fibroin and bacterial cellulose (SF-BC) with biodegradability and increased biocompatibility.

OBJECTIVE

To investigate the regenerative effect of the bioresorbable SF-BC fixation plate on zygomatic arch defects in rats.

METHODS

In vivo animal study. The SF-BC composite plate had a tensile strength similar to that of a polylactic acid plate and a tight, pore-free microstructure. Bilateral segmental bone defects (2 mm in length) were created in the zygomatic arches of adult rats. One side was fixed with the SF-BC composite plate, and the other side was left without fixation.

METHODS

Academic research laboratory.

METHODS

Fifteen adult Sprague-Dawley rats.

METHODS

Fixation of the zygomatic arch defect with the SF-BC composite plate.

METHODS

Micro-computed tomography and histological evaluation of bone samples.

RESULTS

Gross inspection revealed no specific complication. At 1, 2, 4, and 8 postoperative weeks, the zygomatic arches were explored by micro-computed tomography and histological examination. Control sides did not heal completely and showed bony degeneration and necrosis during the 8-week follow-up. However, we observed new bone formation in sides treated with the SF-BC composite plate, and bony defects were completely healed within 8 weeks.

CONCLUSIONS

The SF-BC composite plate is a potential candidate for a new bioresorbable fixation system. Our composite material could considerably shorten bone regeneration time. Additional study of the control of biodegradability and mechanical properties of SF-BC composite plates and a comparative study with the resorbable plates currently in use should be undertaken.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge