Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
GLIA 2011-Oct

The metabolism and toxicity of hemin in astrocytes.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Theresa N Dang
Glenda M Bishop
Ralf Dringen
Stephen R Robinson

Maneno muhimu

Kikemikali

Hemin is cytotoxic, and contributes to the brain damage that accompanies hemorrhagic stroke. In order to better understand the basis of hemin toxicity in astrocytes, the present study quantified hemin metabolism and compared it to the pattern of cell death. Heme oxygenase-1 (HO-1) expression was first evident after 2 h incubation with hemin, with maximal expression being observed by 24 h. Despite the induction of HO-1, it was found that the proportion of hemin metabolized by astrocytes remained fairly constant throughout the 24 h period, with 70-80% of intracellular hemin remaining intact. A period of cell loss began after 2 h exposure to hemin, which gradually increased in severity to reach a maximum by 24 h. This cell loss could not be attenuated by the iron chelator, 1,10-phenanthroline, or by several antioxidant compounds (Trolox, N-acetyl-L-cysteine and N-tert-butyl-α-phenylnitrone), indicating that the mechanism of hemin toxicity does not involve iron. While these results make it unlikely that hemin toxicity is due to interactions with endogenous H(2)O(2), hemin toxicity was increased in the presence of supraphysiological levels of H(2)O(2) and this increase was ameliorated by PHEN, indicating that the iron released from hemin can be toxic under some pathological conditions. However, when H(2)O(2) is present at physiological levels, the toxicity of hemin appears to be caused by other mechanisms that may involve bilirubin and carbon monoxide in this model system.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge