Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology and Applied Pharmacology 2020-Aug

Cardiopulmonary function and dysregulated cardiopulmonary reflexes following acute oleoresin capsicum exposure in rats

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Pompy Patowary
Manash Pathak
Sumit Kishor
Probin Roy
Sanghita Das
Pronobesh Chattopadhyay
Kamaruz Zaman

Maneno muhimu

Kikemikali

Cardiopulmonary functions such as respiratory depression, severe irritation, inflamed respiratory tract, hyperventilation and, tachycardia are the most affected ones when it comes to the riot control agent oleoresin capsicum (OC) exposure. However, no studies have been done to elucidate the mechanism underlying deterioration of the combined cardiopulmonary functions. Parameters such as acute respiratory, cardiac, parameters and ultrasonography (USG) measurements were investigated in an in vivo setup using Wistar rats at 1 h and 24 h post inhalation exposure to 2%, 6% and 10% OC, whereas, cell migration in rat peritoneal mast cells (RPMCs), metabolomics and eosinophil peroxidase (EPO) activity in bronchoalveolar lavage fluid (BALF) were investigated in an in vitro setup. Results obtained from electrophysiological recording indicated that OC exposure produces apnea and decrease in mean arterial pressure (MAP) was obtained from hemodynamic parameters whereas cardiac parameters assessment revealed increase in the level of cardiac output (CO) and decrease in stroke volume (SV) with recovery towards the post-exposure period. A decrease in the percentage area of certain fatty acid pathway metabolites in BALF appropriately linked the lung injury following OC exposure which was further cemented by increasing concentration of EPO. Histopathology and SEM also proved to be favorable techniques for the detection of OC induced physiological cardiac and pulmonary modifications respectively. Furthermore, Boyden chamber experiment established the chemoattractant property of OC. It may be concluded from the above studies that these newly reported facets may be utilized pharmacologically to mitigate cardiopulmonary adverse effects owing to OC exposure.

Keywords: Biodistribution; Cardiopulmonary; Chemotactic; Oleoresin Capsicum; Riot Control; Ultrasonography.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge