Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientific Reports 2020-Feb

Expression of RcHSP70, heat shock protein 70 gene from Chinese rose, enhances host resistance to abiotic stresses.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Changhua Jiang
Yuke Bi
Ruyao Zhang
Shucheng Feng

Maneno muhimu

Kikemikali

There exist differences in the heat tolerance of Chinese rose varieties, and high temperature in summer can lead to failure of blooming in non-heat-tolerant Chinese rose varieties. We cloned a heat shock protein 70 gene (designated RcHSP70) from heat-tolerant varieties of Chinese rose (Rosa hybrida L.) to elucidate the molecular mechanism of heat tolerance and improve the quality of Chinese rose. Degenerate primers were designed for RcHSP70 according to the 5'- and 3'-end sequences of HSP70 genes in apple and tea. RcHSP70 was cloned from heat-tolerant Chinese rose varieties after heat shock. The heat shock-induced expression patterns of RcHSP70 in different Chinese rose varieties were analyzed by RT-PCR. Following heat shock (38 °C/3 h), RcHSP70 was highly expressed in the heat-tolerant varieties but not in the non-heat-tolerant varieties, indicating a close relationship between RcHSP70 and heat resistance in Chinese rose. To verify the function of RcHSP70, we constructed a prokaryotic expression recombinant vector for this gene and transformed it into Escherichia coli BL21. The tolerance of recombinant strains to abiotic stresses, including high temperature, low temperature, high salt, heavy metals, high pH, and oxidation, was evaluated. Additionally, RcHSP70 was transformed into tobacco plants. Because of the overexpression of this gene, transgenic tobacco plants improved their tolerance to high temperature and cold. In addition, transgenic tobacco showed better photosynthetic performance, relative electrical conductivity and proline content than wild tobacco after heat stress and cold stress. Our findings indicate that RcHSP70 is involved in the resistance of Chinese rose to abiotic stresses.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge