Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioorganic Chemistry 2020-Jun

Phytosterols demonstrate selective inhibition of COX-2: In-vivo and in-silico studies of Nicotiana tabacum

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
O Akinloye
D Akinloye
S Onigbinde
D Metibemu

Maneno muhimu

Kikemikali

The inhibition of cyclooxygenase-1 (COX-1) enzyme by Nonsteroidal anti-inflammatory drugs (NSAIDs) exposes the gastrointestinal mucosa to peptic injuries. Selective inhibition of COX-2 generates surpassing anti-inflammatory drug candidates with reduced side effects over current NSAIDs. Phytosterols consumption is reported to decrease the risk of cardiovascular problems. Reports on the selective inhibition of COX-2 by phytosterols are scarce. The present study assesses the anti-inflammatory potentials of phytosterols from Nicotiana tabacum (of the family Solanaceae) through selective inhibition of COX-1 and/or COX-2. Virtual High Throughput Screening (vHTS) and Molecular Docking of phytochemicals from Nicotiana tabacum against the catalytic pockets of COX-1 and COX-2 were used to identify the lead bioactive(s) components of the plant. The hit phytosterols were isolated, histopathological examination of the stomach, in-vivo COX-1/COX-2 mRNAs expression patterns in the liver through reverse transcription-polymerase chain reactions, and enzymes activities of Nicotiana tabacum phytosterol isolates (NTPI) in HCl/ethanol-induced inflammation in Wistar rats were all investigated. Formation of hydrogen bonds favour selective inhibition of COX-2 while hydrophobic interactions favour selective inhibition of COX-1. NTPI demonstrates inhibition of COX-2 by down-regulate the expression of COX-2 mRNA and were ineffective against the expression COX-1 mRNA. NTPI demonstrates hepatoprotective abilities by improving the antioxidant defense system of the liver. Histopathological analyses show NTPI at 50 mg/kg bodyweight regenerates the parietal cells and maintain the gastrointestinal architecture. Drug likeness prediction and ADME toxicity screening show that phytosterols possess good oral bioavailability with no side effects. Phytosterols are selective inhibitors of COX-2, they are hepatoprotective, regenerate parietal cells, and non-toxic.

Keywords: Anti-inflammation; Cyclooxygenase -1 (COX-1) and cyclooxygenase -2 (COX-2); Molecular Docking; Phytosterols; Virtual High Throughput Screening (vHTS).

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge