Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Plant Science 2020-Jul

Response of Brassica napus to Plasmodiophora brassicae Involves Salicylic Acid-Mediated Immunity: An RNA-Seq-Based Study

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Leonardo Galindo-González
Victor Manolii
Sheau-Fang Hwang
Stephen Strelkov

Maneno muhimu

Kikemikali

Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is an important disease of the Brassicaceae and poses a significant threat to the $26.7 billion canola/oilseed rape (Brassica napus) industry in western Canada. While clubroot is managed most effectively by planting resistant host varieties, new pathotypes of P. brassicae have emerged recently that can overcome this resistance. Whole genome analyses provide both a toolbox and a systemic view of molecular mechanisms in host-pathogen interactions, which can be used to design new breeding strategies to increase P. brassicae resistance. We used RNA-seq to evaluate differential gene expression at 7, 14 and 21 days after inoculation (dai) of two B. napus genotypes with differential responses to P. brassicae pathotype 5X. Gall development was evident at 14 dai in the susceptible genotype (the oilseed rape 'Brutor'), while gall development in the resistant genotype (the rutabaga (B. napus) 'Laurentian') was limited and not visible until 21 dai. Immune responses were better sustained through the time-course in 'Laurentian', and numerous genes from immune-related functional categories were associated with salicylic acid (SA)-mediated responses. Jasmonic acid (JA)-mediated responses seemed to be mostly inhibited, especially in the resistant genotype. The upregulation of standard defense-related proteins, like chitinases and thaumatins, was evident in 'Laurentian'. The enrichment, in both host genotypes, of functional categories for syncytium formation and response to nematodes indicated that cell enlargement during P. brassicae infection, and the metabolic processes therein, share similarities with the response to infection by nematodes that produce similar anatomical symptoms. An analysis of shared genes between the two genotypes at different time-points, confirmed that the nematode-like responses occurred earlier for 'Brutor', along with cell metabolism and growth changes. Additionally, the susceptible cultivar turned off defense mechanisms earlier than 'Laurentian'. Collectively, this study showed the importance of SA in triggering immune responses and suggested some key resistance and susceptibility factors that can be used in future studies for resistance breeding through gene-editing approaches.

Keywords: Brassica napus; Plasmodiophora brassicae; RNA-seq; clubroot; immunity; nematodes; salicylic acid.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge