Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

jasmonic acid/arabidopsis thaliana

Kiungo kimehifadhiwa kwenye clipboard
NakalaMajaribio ya klinikiHati miliki
Ukurasa 1 kutoka 772 matokeo
Jasmonoyl-isoleucine (JA-Ile) is a phytohormone that orchestrates plant defenses in response to wounding, feeding insects, or necrotrophic pathogens. JA-Ile metabolism has been studied intensively, but its catabolism as a potentially important mechanism for the regulation of JA-Ile-mediated
BACKGROUND Verticillium longisporum is a soil-borne vascular pathogen infecting cruciferous hosts such as oilseed rape. Quantitative disease resistance (QDR) is the major control means, but its molecular basis is poorly understood so far. Quantitative trait locus (QTL) mapping was performed using a
We have used wound- and jasmonic acid (JA)-responsive genes as molecular markers to elucidate the pathway(s) of wound signal transduction in Arabidopsis thaliana. The JA-responsive (JR) genes JR1, JR2, and JR3 are strongly induced by wounding and by JA, while the wound-responsive (WR) genes WR3 and
Although radiation-induced bystander effects (RIBE) in Arabidopsis thaliana have been well demonstrated in vivo, little is known about their underlying mechanisms, particularly with regard to the participating signaling molecules and signaling pathways. In higher plants, jasmonic acid (JA) and its

Jasmonic acid does not mediate root growth responses to wounding in Arabidopsis thaliana.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Jasmonic acid (JA) is a crucial plant defence signalling substance that has recently been shown to mediate herbivory-induced root growth reduction in the ecological model species Nicotiana attenuata. To clarify whether JA-induced reduction of root growth might be a general response increasing plant
In this paper, we investigated the relationship between hydrogen sulfide (H2S) and mitogen-activated protein kinase kinase (MEK1/2) in jasmonic acid (JA)-regulated the redox state of ascorbate in the leaves of Arabidopsis thaliana. The results showed that JA significantly enhanced
Plant elongation growth on a day-to-day basis is enhanced under specific photoperiod and temperature conditions. Circadian clock is involved in the temperature adaptive photoperiodic control of plant architecture, including hypocotyl elongation in Arabidopsis thaliana. In this regulation,

Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The role of salicylic acid (SA) in plant responses to pathogens has been well documented, but its direct and indirect effects on plant responses to insects are not so well understood. We examined the effects of SA, alone and in combination with jasmonic acid (JA), on the performance of the
Arabidopsis thaliana contains a large number of genes that encode carboxylic acid-activating enzymes, including nine long-chain fatty acyl-CoA synthetases, four 4-coumarate:CoA ligases (4CL), and 25 4CL-like proteins of unknown biochemical function. Because of their high structural and sequence
Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic evidence to show that the Arabidopsis thaliana NAC family proteins ANAC019 and ANAC055
Plant response to mechanical injury includes gene activation both at the wound site and systemically in nondamaged tissues. The model developed for the wound-induced activation of the proteinase inhibitor II (Pin2) gene in potato (Solanum tuberosum) and tomato (Lycopersicon esculentum) establishes
The changes in cytosolic Ca2+ levels play important roles in the signal transduction pathways of many environmental and developmental stimuli in plants and animals. We demonstrated that the increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) of Arabidopsis thaliana leaf cells was induced by

Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The interplay of plant hormones and glucose (Glu) in regulating glucosinolate accumulation in Arabidopsis thaliana was investigated in this study. Glucose-induced glucosinolate biosynthesis was enhanced significantly by the addition of jasmonic acid (JA), whereas the synergistic effect of salicylic
Oligogalacturonides (OGAs) are a biologically active carbohydrate derived from homogalacturonan, a major element of cell wall pectin. OGAs induced resistance and mechanism were assessed in Arabidopsis thaliana-Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) interaction. The effective resistance
Arabidopsis thaliana ecotype Columbia plants (Col-0) treated with plant growth-promoting rhizobacteria (PGPR) Serattia marcescens strain 90-166 and Bacillus pumilus strain SE34 had significantly reduced symptom severity by Cucumber mosaic virus (CMV). In some cases, CMV accumulation was also
Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge