Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

manganese/soya

Kiungo kimehifadhiwa kwenye clipboard
NakalaMajaribio ya klinikiHati miliki
Ukurasa 1 kutoka 18 matokeo
Plant roots, the hidden half of plants, play a vital role in manganese (Mn) toxicity tolerance. However, molecular mechanisms underlying root adaptation to Mn toxicity remain largely unknown. In this study, soybean (Glycine max) was used to investigate alterations of root morphology and protein
Synchrotron- and laboratory-based micro-X-ray fluorescence (µ-XRF) is a powerful technique to quantify the distribution of elements in physically large intact samples, including live plants, at room temperature and atmospheric pressure. However, analysis of light elements with atomic
Manganese (Mn) toxicity is a major constraint limiting plant growth on acidic soils. Superior Mn tolerance in Stylosanthes spp. has been well documented, but its molecular mechanisms remain largely unknown. In this study, superior Mn tolerance in Stylosanthes guianensis was confirmed, as reflected
Plant species differ in response to high available manganese (Mn), but the mechanisms of sensitivity and tolerance are poorly understood. In solution culture, greater than or equal to 30 µm Mn decreased the growth of soybean (Glycine max), but white lupin (Lupinus albus), narrow-leafed lupin (Lupin

Diallel analysis for mineral element absorption in tropical adapted soybeans [Glycine max (L.) Merrill].

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The Brazilian tropical adapted soybeans contains, in addition to superior morphological characters, genetic factors for tolerance to cultivation in acidic, mineral-stressed soils. However, the selection process for these hindrances has been empirical, and information on the genetics of mineral
Increasing soybean yield is a humankind challenge dependent on several management practices, such as fertilizing and weed control. While glyphosate contributes to controlling weeds, it can interfere with spray mixtures stability and, supposedly, complexing with micronutrients within the plant

Nutrients Limiting Soybean (glycine max l) Growth in Acrisols and Ferralsols of Western Kenya.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Low soybean yields in western Kenya have been attributed to low soil fertility despite much work done on nitrogen (N) and phosphorus (P) nutrition leading to suspicion of other nutrient limitations. To investigate this, a nutrient omission trial was set up in the greenhouse at the University of
Our previous work demonstrated substantial accumulation of allantoate in leaf tissue of nodulated soybeans (Glycine max L. Merr., cv Williams) in response to nitrogen fertilization. Research was continued to determine the effect of nitrate and asparagine on ureide assimilation in soybean leaves.

[Aluminum lightens the adverse effects of excessive Mn on growth of soybean (Glycine max)].

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The influence of aluminum (Al) on physiological and biological characteristics of soybean under manganese (Mn) stress was investigated. The results showed that Al suppressed the transport of Mn to shoots (Fig.2B, C), and subsequently alleviated the inhibition of shoot growth (Fig.1), decreased the

Solubilization of microsomal-associated phosphatidylinositol synthase from germinating soybeans.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
CDP-1,2-diacyl-sn-glycerol (CDP-diacylglycerol):myo-inositol phosphatidyltransferase (EC 2.7.8.11, phosphatidylinositol synthase) catalyzes the final step in the de novo synthesis of phosphatidylinositol in the endoplasmic reticulum fraction of germinating soybeans (Glycine max L. var Cutler 71). A
Allantoate amidohydrolases (AAHs) hydrolize the ureide allantoate to ureidoglycolate, CO(2), and two molecules of ammonium. Allantoate degradation is required to recycle purine-ring nitrogen in all plants. Tropical legumes additionally transport fixed nitrogen via allantoin and allantoate into the

The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Legume plants establish a symbiotic association with bacteria called rhizobia, resulting in the formation of nitrogen-fixing root nodules. A Lotus japonicus symbiotic mutant, sen1, forms nodules that are infected by rhizobia but that do not fix nitrogen. Here, we report molecular identification of

Laboratory Microprobe X-Ray Fluorescence in Plant Science: Emerging Applications and Case Studies.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
In vivo and micro chemical analytical methods have the potential to improve our understanding of plant metabolism and development. Benchtop microprobe X-ray fluorescence spectroscopy (μ-XRF) presents a huge potential for facing this challenge. Excitation beams of 30 μm and 1 mm in diameter were
Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their acquisition via the shoot. We conducted field experiments to investigate the effects

Soybean cultivars 'Williams 82' and 'Maple Arrow' produce both urea and ammonia during ureide degradation.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The ability of two soybean (Glycine max L. [Merrill]) cultivars, 'Williams 82' and 'Maple Arrow', which were reported to use different ureide degradation pathways, to degrade the ureides allantoin and allantoate was investigated. Protein fractions and total leaf homogenates from the fourth
Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge