Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

phytase/mtumbako

Kiungo kimehifadhiwa kwenye clipboard
NakalaMajaribio ya klinikiHati miliki
10 matokeo
Citrate and phytase root exudates contribute to improved phosphorus (P) acquisition efficiency in Nicotiana tabacum (tobacco) when both exudates are produced in a P deficient soil. To test the importance of root intermingling in the interaction of citrate and phytase exudates, Nicotiana tabacum

Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The phyA gene from Aspergillus ficuum coding for a 441-amino-acid full-length phytase was expressed in Nicotiana tabacum (tobacco) leaves. The expressed phytase was purified to homogeneity using ion-exchange column chromatography. The purified phytase was characterized biochemically and its kinetic

Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Phytase from Aspergillus niger increases the availability of phosphorus from feed for monogastric animals by releasing phosphate from the substrate phytic acid. A phytase cDNA was constitutively expressed in transgenic tobacco (Nicotiana tabacum) plants. Secretion of the protein to the extracellular
A full-length phytase gene (phy) of Aspergillus nidulans was amplified from the cDNA library by polymerase chain reaction (PCR), and it was introduced into a bacterial expression vector, pET-28a. The recombinant protein (rPhy-E, 56 kDa) was overexpressed in the insoluble fraction of Escherichia coli

Expression of a heat stable phytase from Aspergillus fumigatus in tobacco (Nicotiana tabacum L. cv. NC89).

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Aspergillus fumigatus contains a heat-stable phytase of great potential. To determine whether this phytase could be expressed in plants as a functional enzyme, we introduced the phytase gene from A. fumigatus (fphyA) in tobacco (Nicotiana tabacum L. cv. NC89) by Agrobacterium-mediated
Transgenic Nicotiana tabacum plants expressing a chimeric phytase gene (ex::phyA) from the soil fungus Aspergillus niger were generated. Three independently transformed lines showed increased extracellular phytase activity compared with a vector control and wild-type plants, both of which had no

Phytase activity in tobacco (Nicotiana tabacum) root exudates is exhibited by a purple acid phosphatase.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Phytases are enzymes that catalyze liberation of inorganic phosphates from phytate, the major organic phosphorus in soil. Tobacco (Nicotiana tabacum) responds to phosphorus starvation with an increase in extracellular phytase activity. By a three-step purification scheme, a phosphatase with phytase

A 1-phytase type III effector interferes with plant hormone signaling.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Most Gram-negative phytopathogenic bacteria inject type III effector (T3E) proteins into plant cells to manipulate signaling pathways to the pathogen's benefit. In resistant plants, specialized immune receptors recognize single T3Es or their biochemical activities, thus halting pathogen ingress.
Purple acid phosphatase (PAP) catalyzes the hydrolysis of phosphate monoesters and anhydrides to release phosphate within an acidic pH range. Among the 29 PAP-like proteins in Arabidopsis (Arabidopsis thaliana), AtPAP15 (At3g07130) displays a greater degree of amino acid identity with soybean
Organic phosphorus (P) is abundant in most soils but is largely unavailable to plants. Pseudomonas spp. can improve the availability of P to plants through the production of phytases and organic anions. Gluconate is a major component of Pseudomonas organic anion production and may therefore play an
Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge