Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

saccharum sinense/hypoxia

Kiungo kimehifadhiwa kwenye clipboard
NakalaMajaribio ya klinikiHati miliki
5 matokeo

Biotechnological approaches to creation of hypoxia and anoxia tolerant plants.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
The present work provides results of a number of biotechnological studies aimed at creating cell lines and entire plants resistant to anaerobic stress. Developed biotechnological approaches were based on earlier fundamental researches into anaerobic stress in plants, so "Introduction" briefly covers
Tobacco leaves (Nicotiana tabacum var. Wisconsin 38) submitted to anaerobic conditions behave in a manner similar to that of maize, sugarcane, or sorghum leaves (C4-plants); more precisely, a lag time in O2 release is exhibited when the leaves are exposed to light after treatment in the dark under

Hypersensitivity pneumonitis: bagassosis.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Pneumoconiosis from inorganic dusts is very common worldwide and has been studied by many experts in Taiwan. However, pneumoconiosis due to organic dusts, i.e. hypersensitivity pneumonitis, seems rather uncommon in Taiwan, and to our best knowledge there has been no related report so far. In this

Crosstalk between sugarcane and a plant-growth promoting Burkholderia species.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome

Regulation of assimilate import into sink organs: update on molecular drivers of sink strength.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Recent developments have altered our view of molecular mechanisms that determine sink strength, defined here as the capacity of non-photosynthetic structures to compete for import of photoassimilates. We review new findings from diverse systems, including stems, seeds, flowers, and fruits. An
Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge