Ukurasa 1 kutoka 20 matokeo
The UV-B induced formation of thymine cis-syn cyclobutane dimer and related (6-4) photoproduct was monitored within DNA of cultured cells and plants of Arabidopsis thaliana. This was achieved using a sensitive and accurate HPLC-tandem mass spectrometry assay. It was found that the cyclobutane
Plant organelles cope with endogenous DNA damaging agents, byproducts of respiration and photosynthesis, and exogenous agents like ultraviolet light. Plant organellar DNA polymerases (DNAPs) are not phylogenetically related to yeast and metazoan DNAPs and they harbor three insertions not present in
BACKGROUND
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) hydrolyzes dUTP to dUMP and pyrophosphate to maintain the cellular thymine-uracil ratio. dUTPase is also a target for cancer chemotherapy. However, the mechanism defining its substrate affinity remains unclear. Sequence comparisons
CONCLUSIONS
The AHAS gene family in soybean was characterized. The locus Als1 for sulfonylurea resistance was mapped and the resistant allele was characterized at the molecular level. Sulfonylurea (SU) resistance in soybean is controlled by Als1, a semi-dominant allele obtained by EMS mutagenesis
To reveal the mutation effect of low-energy ion implantation on Ambidopsis thaliana in vivo, T80II, a stable dwarf mutant, derived from the seeds irradiated by 30 keV N(+) with the dose of 80 X 10(15) ions/cm(2) was used for Random Amplified Polymorphic DNA (RAPD) and base sequence analysis. The
Metabolites regulate their own production by directly interacting with highly conserved regions of mRNA that are capable of forming discrete tertiary structures. Such regions of mRNA are called riboswitches. The thiamine pyrophosphate (TPP) riboswitch is the most common riboswitch in different
Arabidopsis thaliana repressor of silencing 1 (ROS1) is a multi-domain bifunctional DNA glycosylase/lyase, which excises 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) as well as thymine and 5-hydroxymethyluracil (i.e., the deamination products of 5mC and 5hmC) when paired with a guanine,
The azido derivatives of alcohols (3-azido-1,2-propandiol and 1,3-diazido-2-propanol) and monosaccharides (6-azido-6-deoxy-beta-D-glucose and 6-azido-6-deoxy-beta-D-galactose), as well as the proximal mutagenic product of sodium azide metabolism beta-azido-L-alanine, exhibited a high mutagenic
DNA polymerase eta belongs to the Y-family of DNA polymerases, enzymes that are able to synthesize past template lesions that block replication fork progression. This polymerase accurately bypasses UV-associated cis-syn cyclobutane thymine dimers in vitro and therefore may contributes to resistance
Cryptochromes use near-UV/blue light to regulate a variety of growth and adaptive process. Recent biochemical studies demonstrate that the Cryptochrome-Drosophila, Arabidopsis, Synechocystis, Human (Cry-DASH) subfamily of cryptochromes have photolyase activity exclusively for single-stranded
Reactive oxygen species (ROS) are ubiquitous DNA-damaging agents, and the repair of oxidative DNA lesions is essential to prevent mutations and cell death. Escherichia coli endonuclease III is the prototype repair enzyme for removal of oxidized pyrimidines from DNA. A database homology search
Cytosine methylation is an epigenetic mark that promotes gene silencing and plays important roles in development and genome defense against transposons. Methylation patterns are established and maintained by DNA methyltransferases that catalyze transfer of a methyl group from S-adenosyl-L-methionine
A high-resolution map of DNA methylation in Arabidopsis has recently been generated using high-throughput sequencing of bisulfite-converted DNA. This detailed profile measures the methylation state of most of the cytosines in the Arabidopsis genome, and allows us for the first time to address
Ethyl methane sulfonate (EMS) mutagenesis in Arabidopsis is the most widely used mutagenesis technique. EMS has high mutagenicity and low mortality and can be used in any laboratory with a fume hood. The chemical principle of EMS mutagenesis is simple; it is based on the ability of EMS to alkylate
The WRKY family transcription factors regulate plant-specific reactions that are mostly related to biotic and abiotic stresses. They share the WRKY domain, which recognizes a DNA element (TTGAC(C/T)) termed the W-box, in target genes. Here, we determined the solution structure of the C-terminal WRKY