Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2018-May

A peptidogalactomannan isolated from Cladosporium herbarum induces defense-related genes in BY-2 tobacco cells.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Bianca Braz Mattos
Caroline Montebianco
Elisson Romanel
Tatiane da Franca Silva
Renato Barroso Bernabé
Fernanda Simas-Tosin
Lauro M Souza
Guilherme L Sassaki
Maite F S Vaslin
Eliana Barreto-Bergter

Anahtar kelimeler

Öz

Cladosporium herbarum is a plant pathogen associated with passion fruit scab and mild diseases in pea and soybean. In this study, a peptidogalactomannan (pGM) of C. herbarum mycelium was isolated and structurally characterized, and its role in plant-fungus interactions was evaluated. C. herbarum pGM is composed of carbohydrates (76%) and contains mannose, galactose and glucose as its main monosaccharides (molar ratio, 52:36:12). Methylation and 13C-nuclear magnetic resonance (13C-NMR) spectroscopy analysis have shown the presence of a main chain containing (1 → 6)-linked α-D-Manp residues, and β-D-Galf residues are present as (1 → 5)-interlinked side chains. β-Galactofuranose containing similar structures were characterized by our group in A. fumigatus, A. versicolor, A. flavus and C. resinae. Tobacco BY-2 cells were used as a model system to address the question of the role of C. herbarum pGM in cell viability and induction of the expression of plant defense-related genes. Native and partially acid hydrolyzed pGMs (lacking galactofuranosyl side-chain residues) were incubated with BY-2 cell suspensions at different concentrations. Cell viability drastically decreased after exposure to more than 400 μg ml-1 pGM; however no cell viability effect was observed after exposure to a partially acid hydrolyzed pGM. BY-2 cell contact with pGM strongly induce the expression of plant defense-related genes, such as phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX), as well as the pathogen-related PR-1a, PR-2 and PR-3 genes, suggesting that pGM activates defense responses in tobacco cells. Interestingly, contact with partially hydrolyzed pGM also induced defense-related gene expression at earlier times than native pGM. These results show that the side chains of the (1 → 5)-linked β-D-galactofuranosyl units from pGM play an important role in the first line fungus-plant interactions mediating plant responses against C. herbarum. In addition, it was observed that pGM and/or C. herbarum conidia are able to induced HR when in contact with tobacco leaves and in vitro plantlets roots, producing necrotic lesions and peroxidase and NO burst, respectively.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge