Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pineal Research 2010-Aug

Abnormal proliferation and differentiation of osteoblasts from girls with adolescent idiopathic scoliosis to melatonin.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Gene Chi-Wai Man
William Wei-Jun Wang
Benson Hiu-Yan Yeung
Simon Kwong-Man Lee
Bobby Kin-Ah Ng
Wing-Yin Hung
Jack Ho Wong
Tzi-Bun Ng
Yong Qiu
Jack Chun-Yiu Cheng

Anahtar kelimeler

Öz

Melatonin deficiency has been postulated as an etiologic factors in adolescent idiopathic scoliosis (AIS). In previous studies, melatonin was shown to regulate skeletal growth and bone formation in both humans and rats. Although it remains controversial whether there are differences in serum melatonin level between AIS and control subjects, melatonin signaling pathway dysfunction in osteoblasts has been reported in patients with AIS. Recently, our group found that melatonin receptor 1B (MT2) gene polymorphism was associated with the occurrence of AIS. Hence, the present study investigated the effect of melatonin on AIS osteoblasts. In vitro assays were performed with osteoblasts isolated from 17 severe AIS girls and nine control subjects. The osteoblasts were exposed to different concentrations of melatonin for 3 days. The effects of melatonin on cell proliferation (as evidenced by MTT assay) and differentiation (demonstrated by alkaline phosphatase activity) were determined. In the control group, melatonin significantly stimulated osteoblasts to proliferate and differentiate. However, in the AIS group, the stimulatory effects of melatonin were not discernible. Importantly, this finding demonstrated that there is a significant difference between AIS and control osteoblasts in functional response toward melatonin. Melatonin-stimulated proliferation of control osteoblasts was inhibited by the MT2 antagonist, 4-phenyl-2-propionamidotetraline, as well as by luzindole, a nonselective melatonin receptor antagonist, suggesting that MT2 is associated with the proliferative action of melatonin. The lack of response in AIS osteoblasts might be because of dysfunction of the melatonin signaling pathway, which may contribute to the low bone mineral density and abnormal skeletal growth observed in patients with AIS.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge