Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental and Therapeutic Medicine 2018-May

Ajuga decumbens stimulates mesenchymal stem cell differentiation and regenerates cartilage in a rabbit osteoarthritis model.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Yoko Sawada
Atsushi Sugimoto
Tomohiro Osaki
Yoshiharu Okamoto

Anahtar kelimeler

Öz

In a previous study by our group, Ajuga decumbens extract (ADE) was demonstrated to decrease the number of osteoclasts in subchondral bone and to have a synergistic effect with glucosamine in improving cartilaginous injuries in a rabbit model of osteoarthritis. In the present study, a concentrate of the useful fraction of ADE, termed extra ADE (EADE), which includes higher concentrations of the active component 20-hydroxyecdysone, was evaluated for its efficacy to accelerate the healing of experimental cartilage injury. Cartilage injuries were surgically induced in rabbits by creating three holes; one in the articular cartilage of the medial trochlea and two in the trochlear sulcus of the distal femur. The rabbits were divided into the following four groups (n=3 in each): Control, ADE (0.5 g/kg), low dosage EADE (0.05 g/kg; low EADE) and high dosage EADE (0.5 g/kg; high EADE). ADE and EADE were dissolved in tap water and each dosage was orally administered every day for 3 weeks. At the end of the experimental period, histological analysis indicated that the cartilage matrix was regenerated in the low and high EADE groups. On counting of cells in the histological specimens, it was determined that the mean number of osteoclasts per 100 osteoblasts in subchondral bone was lower in the high EADE group compared with the control group. Furthermore, the results indicated that treatment with EADE (1-100 µg/ml) stimulated chondrogenic differentiation of mesenchymal stem cells and induced proteoglycan production to a greater extent than the control in vitro. EADE treatment (10 and 100 µg/ml) was also observed to significantly attenuate interleukin-1β-induced prostaglandin E2 production in chondrocytes (P<0.05). In summary, the results of the present study suggest that EADE may have greater curative effects on bone injury compared with the currently used therapeutic ADE.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge