Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
DARU, Journal of Pharmaceutical Sciences 2017-Dec

Application of nanostructured lipid carriers: the prolonged protective effects for sesamol in in vitro and in vivo models of ischemic stroke via activation of PI3K signalling pathway.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Parichehr Hassanzadeh
Fatemeh Atyabi
Rassoul Dinarvand
Ahmad-Reza Dehpour
Morteza Azhdarzadeh
Meshkat Dinarvand

Anahtar kelimeler

Öz

BACKGROUND

Treatment of the ischemic stroke has remained a major healthcare challenge. The phenolic compound, sesamol, has shown promising antioxidant and neuroprotective effects, however, fast clearance may negatively affect its efficiency. This, prompted us to incorporate sesamol into the nanostructured lipid carriers (S-NLCs) and evaluate its therapeutic potential in in vitro and in vivo models of ischemic stroke.

METHODS

S-NLCs formulations were prepared by high-pressure homogenization followed by physicochemical characterization, evaluation of the bioactivity of the optimal formulation in oxygen-glucose deprivation (OGD) and global cerebral ischemia/reperfusion (I/R) injury and implication of phosphatidylinositol 3-kinase (PI3K) pathway in this regard. Two- or three-way ANOVA, Mann-Whitney U test, and Student's t-test were used for data analysis.

RESULTS

Formation of S-NLCs which exhibited a controlled release profile, was confirmed by scanning electron microscope and differential scanning calorimetry. 1- and 8-h OGD followed by 24 h re-oxygenation significantly reduced PC12 cell viability, increased lactate dehydrogenase activity and the number of condensed nuclei, and induced oxidative stress as revealed by increased malondialdehyde level and decreased glutathione content and superoxide dismutase and catalase activities. Sesamol (80 and 100 μM) reduced the cytotoxicity, oxidative stress, and cellular damage only after 1-h OGD, while, S-NLCs (containing 80 and 100 μM of sesamol) were effective at both time points. Intravenous injections of S-NLCs (20 and 25 mg/kg) into rats markedly attenuated I/R-induced neurobehavioural deficits, cellular damage, and oxidative stress, while, free sesamol failed. Pre-treatment with PI3K inhibitor, LY294002, abolished the protective effects against OGD or I/R.

CONCLUSIONS

S-NLCs improve the pharmacological profile of sesamol and provide longer lasting protective effects for this phenolic phytochemical. This nanoformulation by activating PI3K pathway may serve as a promising candidate for neuroprotection against the cerebral stroke or other neurodegenerative disorders. Sesamol-loaded NLCs, a promising nanoformulation against the ischemic stroke.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge