Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Cancer 2008-Nov

Cancer incidence in men: a cluster analysis of spatial patterns.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Tiziana Cassetti
Francesco La Rosa
Luca Rossi
Daniela D'Alò
Fabrizio Stracci

Anahtar kelimeler

Öz

BACKGROUND

Spatial clustering of different diseases has received much less attention than single disease mapping. Besides chance or artifact, clustering of different cancers in a given area may depend on exposure to a shared risk factor or to multiple correlated factors (e.g. cigarette smoking and obesity in a deprived area). Models developed so far to investigate co-occurrence of diseases are not well-suited for analyzing many cancers simultaneously. In this paper we propose a simple two-step exploratory method for screening clusters of different cancers in a population.

METHODS

Cancer incidence data were derived from the regional cancer registry of Umbria, Italy. A cluster analysis was performed on smoothed and non-smoothed standardized incidence ratios (SIRs) of the 13 most frequent cancers in males. The Besag, York and Mollie model (BYM) and Poisson kriging were used to produce smoothed SIRs.

RESULTS

Cluster analysis on non-smoothed SIRs was poorly informative in terms of clustering of different cancers, as only larynx and oral cavity were grouped, and of characteristic patterns of cancer incidence in specific geographical areas. On the other hand BYM and Poisson kriging gave similar results, showing cancers of the oral cavity, larynx, esophagus, stomach and liver formed a main cluster. Lung and urinary bladder cancers clustered together but not with the cancers mentioned above. Both methods, particularly the BYM model, identified distinct geographic clusters of adjacent areas.

CONCLUSIONS

As in single disease mapping, non-smoothed SIRs do not provide reliable estimates of cancer risks because of small area variability. The BYM model produces smooth risk surfaces which, when entered into a cluster analysis, identify well-defined geographical clusters of adjacent areas. It probably enhances or amplifies the signal arising from exposure of more areas (statistical units) to shared risk factors that are associated with different cancers. In Umbria the main clusters were characterized by high risks for cancers with alcohol and tobacco both as risk factors. Tobacco-only related cancers formed a separate cluster to the alcohol- and tobacco-related sites. Joint spatial analysis or investigation of hypothesized exposures might be used for further investigation into interesting geographical clusters.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge