Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Accounts of Chemical Research 2018-Sep

Catalysis inside the Hexameric Resorcinarene Capsule.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Qi Zhang
Lorenzo Catti
Konrad Tiefenbacher

Anahtar kelimeler

Öz

In this Account, we outline our investigation into the supramolecular resorcinarene capsule as a catalyst. Molecular capsules not only are of interest due to the similarities of their binding pockets with those of natural enzymes but also feature potential advantages for catalysis. Due to the restricted internal volume of the binding pockets, substrate selectivities are commonly observed. Substrates that are encapsulated more efficiently will be converted selectively in the presence of less suitable substrates. This size selectivity cannot be obtained in a regular solution experiment. In addition, because of the distinct chemical environment inside the capsule, different product selectivities may be observed. Furthermore, the encapsulation of reactive catalysts inside confined environments may improve catalyst compatibility for multicatalyst tandem reactions. Although the potential advantages of performing catalysis inside closed microenvironments are generally recognized, the number of known catalytically active supramolecular host systems is still very limited. There are several reasons, the most important of which is that it is very difficult to predict the catalytic potential of known supramolecular host systems. In several cases, even the encapsulation behavior of host systems is not completely understood or explored. Therefore, it is evident that further research is required to explore the potential of catalysis inside supramolecular capsules. Our initial research mainly focused on understanding the puzzling encapsulation behavior of the self-assembled resorcinarene capsule I and the closely related pyrogallolarene capsule II. After the elucidation of the decisive differences between these two systems, we explored the catalytic potential of capsule I. A variety of different reactions were successfully performed inside its cavity. The most important examples highlighted in this Account are iminium catalysis, the tail-to-head terpene cyclization, and the carbonyl-olefin metathesis. In the case of proline-mediated iminium catalysis, we were able to demonstrate that the enantioselectivity for the product formation was increased when the reaction was performed inside the cavity of capsule I. This is remarkable since the capsule is formed from achiral building blocks and, therefore, does not add chiral information to the reaction mixture. The tail-to-head terpene cyclization is the most complex reaction performed so far inside capsule I. The cyclic monoterpenes eucalyptol and α-terpinene were formed in useful yields. Interestingly, these products have not yet been synthetically accessible in solution directly from acyclic terpene precursors. Furthermore, we demonstrated that the cocatalytic system of capsule I and HCl is suitable for carbonyl-olefin metathesis. HCl was shown to be an inefficient catalyst for this reaction in solution experiments. This demonstrates that the different chemical environment inside the supramolecular container can lead to altered product selectivity. In general, we hope to demonstrate in this Account that research on catalysis inside supramolecular capsules, although still in its infancy, is starting to produce the first synthetically relevant results.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge