Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Drugs 1985-Mar

Clinical application of inhibitors of fibrinolysis.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
M Verstraete

Anahtar kelimeler

Öz

The basic proteinase inhibitor from bovine organs, aprotinin, was first identified in 1930 and its effect on enzyme and other biological systems has since been extensively studied. Aprotinin can only be administered intravenously and has a half-life of about 2 hours. Its administration at the start of cardiopulmonary bypass surgery appears to reduce blood loss and to protect against global myocardial ischaemia. Similarly, a smaller infarct size seems to result from early administration of aprotinin within the first hour after myocardial infarction, though further studies are needed to confirm this effect. A combination of aprotinin with tranexamic acid may be effective in preventing or delaying rebleeding after rupture of an intracerebral aneurysm; the addition of aprotinin seems to decrease the incidence of delayed cerebral vasospasm and ischaemic complications which are sometimes noted when tranexamic acid alone is used. Aprotinin is also effective as adjuvant treatment in traumatic haemorrhagic shock. The recommended loading dose is 15,000 to 20,000 KIU/kg bodyweight administered as a short intravenous infusion, followed by 50,000 KIU/hour by continuous infusion. Side effects of aprotinin are very rare. Epsilon-Aminocaproic acid (EACA), p-aminomethylbenzoic acid (PAMBA) and tranexamic acid are synthetic antifibrinolytic amino acids. Saturation of the lysine binding sites of plasminogen with these inhibitors displaces plasminogen from the fibrin surface. On a molar basis tranexamic acid is at least 7 times more potent that epsilon-aminocaproic acid and twice as potent as p-aminomethylbenzoic acid. All 3 compounds are readily absorbed from the gastrointestinal tract and excreted in active form in the urine. The plasma half-life of tranexamic acid is about 80 minutes. The main indications for tranexamic acid are the prevention of excessive bleeding after tonsillectomy, prostatic surgery, and cervical conisation, and primary and IUD-induced menorrhagia. It is possible that gastric and intestinal bleeding can also be reduced as well as recurrent epistaxis. Tranexamic acid could also be useful after ocular trauma. The value of fibrinolysis inhibitors in the prevention of bleeding after tooth extraction in patients with haemophilia is well documented, as is the treatment of hereditary angioneurotic oedema. The usual dose of tranexamic acid is 0.5 to 1g (10 to 15 mg/kg bodyweight) given intravenously 2 to 3 times daily, or 1 to 1.5 g orally 3 to 4 times daily. This dose needs to be reduced in patients with renal insufficiency. The main side effects of tranexamic acid are nausea or diarrhoea.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge