Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2018-Jul

Co-evolutionary associations between root-associated microbiomes and root transcriptomes in wild and cultivated rice varieties.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Lei Tian
Shaohua Shi
Lina Ma
Fahad Nasir
Xiujun Li
Lam-Son Phan Tran
Chunjie Tian

Anahtar kelimeler

Öz

The plants and root-associated microbiomes are closely related. Plant metabolic substances can serve as a nutrient source for the microbiome, and in return, the microbiome can regulate the production of plant metabolic substances. Wild rice (Oryza rufipogon), as the ancestor of cultivated rice (Oryza sativa), has changed several metabolic pathways and root-associated microbiome during evolution. Thus, the study of the different associations between metabolic pathways and root-associated microbiomes in wild and cultivated rice varieties is important for rice breeding. In this article, the co-evolutionary association between metabolic pathways, which are based on transcriptome data, and root-associated microbiomes, which are based on 16S rRNA and internal transcribed spacer (ITS) amplicon data, in wild and cultivated rice was studied. The results showed that the enriched pathways were differentially correlated with the enriched microbiomes in wild and cultivated rice varieties. Pathways for 'Glutathione metabolism', 'Plant-pathogen interaction', 'Protein processing in endoplasmic reticulum' and 'Tyrosine metabolism' were positively associated with the improved relative abundance of bacterial and fungal operational taxonomic units (OTUs) in wild rice. On the other hand, 'Glycolysis/Gluconeogenesis', 'Brassinosteroid biosynthesis', 'Carbon metabolism', 'Phenylpropanoid biosynthesis' and 'Caffeine metabolism' were positively correlated with the improved relative abundance of bacterial and fungal OTUs in cultivated rice. Redundancy analysis showed that certain bacterial and fungal species could positively and significantly affect plant gene expression; for instance, Streptomyces, with 8.7% relative abundance in bacterial community, significantly affected plant gene expression in wild rice. This study can provide the theoretical basis for recognizing the associations between root-associated microbiomes and root transcriptomes in wild and cultivated rice varieties, and can provide practical significance for developing useful bacterial and fungal resources in wild rice.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge