Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Protoplasma 2005-Dec

Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Christy M Motes
Priit Pechter
Cheol Min Yoo
Yuh-Shuh Wang
Kent D Chapman
Elison B Blancaflor

Anahtar kelimeler

Öz

Plant development is regulated by numerous chemicals derived from a multitude of metabolic pathways. However, we know very little about the biological effects and functions of many of these metabolites in the cell. N-Acylethanolamines (NAEs) are a group of lipid mediators that play important roles in mammalian physiology. Despite the intriguing similarities between animals and plants in NAE metabolism and perception, not much is known about the precise function of these metabolites in plant physiology. In plants, NAEs have been shown to inhibit phospholipase Dalpha (PLDalpha) activity, interfere with abscisic acid-induced stomatal closure, and retard Arabidopsis seedling development. 1-Butanol, an antagonist of PLD-dependent phosphatidic acid production, was reported to induce defects in Arabidopsis seedling development that were somewhat similar to effects induced by elevated levels of NAE. This raised the possibility that the impact of NAE on seedling growth could be mediated in part via its influence on PLD activity. To begin to address this possibility, we conducted a detailed, comparative analysis of the effects of 1-butanol and N-lauroylethanolamine (NAE 12:0) on Arabidopsis root cell division, in vivo cytoskeletal organization, seed germination, and seedling growth. Although both NAE 12:0 and 1-butanol induced profound cytoskeletal and morphological alterations in seedlings, there were distinct differences in their overall effects. 1-Butanol induced more pronounced modifications in cytoskeletal organization, seedling growth, and cell division at concentrations severalfold higher than NAE 12:0. We propose that these compounds mediate their differential effects on cellular organization and seedling growth, in part through the differential modulation of specific PLD isoforms.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge