Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Diabetes 2003-Aug

Effect of training on muscle triacylglycerol and structural lipids: a relation to insulin sensitivity?

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Jørn W Helge
Flemming Dela

Anahtar kelimeler

Öz

We studied whether endurance training impacts insulin sensitivity by affecting the structural and storage lipids in humans. Eight male subjects participated (age 25 +/- 1 years, height 178 +/- 3 cm, weight 76 +/- 4 kg [mean +/- SE]). Single-leg training was performed for 30 min/day for 4 weeks at approximately 70% of single-leg maximal oxygen uptake. After 8, 14, and 30 days, a two-step hyperinsulinemic-euglycemic glucose clamp, combined with catheterization of an artery and both femoral veins, was performed. In addition, a muscle biopsy was obtained from vastus lateralis of both legs. Maximal oxygen uptake increased by 7% in the trained leg (T), and training workload increased (P < 0.05) from 79 +/- 12 to 160 +/- 15 W. At day 8, glucose uptake was higher (P < 0.01) in the trained (0.8 +/- 0.2, 6.0 +/- 0.8, 13.4 +/- 1.2 mg x min(-1) x kg(-1) leg wt) than the untrained leg (0.5 +/- 0.2, 3.7 +/- 0.6, 10.5 +/- 1.5 mg x min(-1) x kg(-1) leg wt) at basal and the two succeeding clamp steps, respectively. After day 8, training did not further increase leg glucose uptake. Individual muscle triacylglycerol fatty acid composition and total triacylglycerol content were not significantly affected by training and thus showed no relation to leg glucose uptake. Individual muscle phospholipid fatty acids were not affected by training, but the content of phospholipid polyunsaturated fatty acids was higher (P < 0.06) after 30 than 8 days in T. Furthermore, after 30 days of training, the sum of phospholipid long-chain polyunsaturates was correlated to leg glucose uptake (r = 0.574, P < 0.04). Endurance training did not influence muscle triacylglycerol content or total triacylglycerol fatty acid composition. In contrast, training induced a minor increase in the content of phospholipid fatty acid membrane polyunsaturates, which may indicate that membrane lipids may have a role in the training-induced increase in insulin sensitivity.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge