Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 1991-Feb

Electrical patterns of tobacco cells in media containing indole-3-acetic acid or 2,4-dichlorophenoxyacetic acid : Their relation to organogenesis and herbicide action.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
A Goldsworthy
M G Mina

Anahtar kelimeler

Öz

A simple, inexpensive, and stable drive-unit for a vibrating probe is described. It was used to measure transcellular electrical currents and their stability in cells from suspension cultures of Nicotiana tabacum L. var. virginica. The cells were highly variable in size, morphology and current-pattern. The magnitude and pattern of the currents depended on the age of the culture, the morphology of the cells and the auxin in the culture medium. Currents in small cell clusters were weakest during the lag-phase of growth and strongest when the cultures were actively growing. The shape of the cells was related to the electrical pattern surrounding them, electrically polar cells tending to be elongated. The proportion of polar cells depended on the auxin composition of the culture medium. About 75% of the cells from suspensions grown in the presence of indole-3-acetic acid (IAA) were electrically polar. These cells normally divided at right angles to their electrical axes to form filaments. Only around 20% of the cells grown in medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) were electrically polar, the remainder had randomly oriented currents and divided in random directions to form irregular clusters rather than filaments. The electrical patterns of cells in 2,4-D were much less stable than those of cells in IAA. When currents were measured repeatedly at fixed locations on cells, those in 2,4-D were about twice as likely to disappear, arise de novo, or change direction as those in IAA. When cells were transferred from 2,4-D to IAA media, the percentage of polar cells increased from 25 to 40 within 1 d, but when they were transferred from IAA to 2,4-D, this percentage decreased from 48 to 26. It is suggested that one of the reasons that 2,4-D suppresses organogenesis in tobacco cultures (and possibly why it also functions as a herbicide) is that it reduces the stability of transcellular currents and disrupts the electrical patterns of cells so that they become less capable of organized polar growth.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge