Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Hypertension 2007-Oct

Fidarestat improves cardiomyocyte contractile function in db/db diabetic obese mice through a histone deacetylase Sir2-dependent mechanism.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Feng Dong
Jun Ren

Anahtar kelimeler

Öz

BACKGROUND

Fidarestat, an aldose reductase (AR) inhibitor, displays promise for the treatment of diabetic neuropathy, although the underlying mechanism of action remains unclear. Histone modification, especially histone acetylation, has been implicated in the pathogenesis of diabetes and its complications.

OBJECTIVE

The aim of this study was two-fold: to examine the impact of fidarestat on diabetic cardiomyopathy; and to evaluate the role of histone acetylation in the fidarestat-elicited effect, if any.

METHODS

Cardiomyocytes from db/db diabetic obese and control mice were exposed to fidarestat (0.1-10 mumol/l) for 60 min in the absence or presence of splitomicin, an inhibitor of the NAD-dependent histone deacetylase Sir2. Superoxide levels were measured by dihydroethidium fluorescence. Expression of Sir2, IkappaB (inhibitor of kappaB) and phosphorylated IkappaB was evaluated by western blotting.

RESULTS

Myocytes from db/db mice exhibited greater cross-sectional area, depressed peak shortening and maximal velocity of shortening/re-lengthening, and prolonged duration of re-lengthening (TR90). Myocytes from db/db mice displayed a reduced rise in intracellular Ca and prolonged intracellular Ca decay. All abnormalities were attenuated by fidarestat. The beneficial effects of fidarestat on db/db cardiomyocytes were nullified by splitomicin with the exception of intracellular Ca decay rate and TR90. Intracellular superoxide was enhanced in db/db myocytes, which was attenuated by fidarestat. Protein expression of Sir2 was decreased in db/db mouse hearts. Phosphorylated IkappaB: IkappaB ratio was increased in db/db mouse. Fidarestat reduced the elevated phosphorylated IkappaB: IkappaB ratio, the effect of which was abolished by splitomicin.

CONCLUSIONS

Collectively, these results suggest that fidarestat may protect against cardiomyocyte dysfunction in db/db mice through a Sir2-dependent pathway.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge