Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2009-Mar

First Report of Bean yellow mosaic virus from Diseased Lupinus luteus in Eastern Washington.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
N Robertson
C Coyne

Anahtar kelimeler

Öz

Lupine accessions from the Cool Season Food Legume Seed Collection are grown for seed regenerations in Pullman, WA by the Agricultural Research Service, Western Regional Plant Introduction Station. Selected seed was germinated in the greenhouse and assayed by indirect ELISA using antiserum for potyvirus group detection (Agdia, Inc., Elkhart, IN). Healthy transplants were grown for seed collection on outside plots. In July of 2005, more than 90% of 307 Lupinus luteus L. transplants developed severe yellowing, necrosis, and stunting with an estimated 5% plant death. Plants were heavily infested with aphids and leaf sap was serologically positive for potyvirus. Partially purified virus preparations from infected plants contained filamentous particles and a 35-kDa protein that reacted with universal potyvirus antiserum on western blots. Reverse transcription (RT)-PCR using potyvirus universal primers (2) and cDNA derived from virion RNA generated a ~1.7-kbp product that was cloned and sequenced. The sequenced portion of the genomic RNA contained 1,610 nucleotides (nt) on its 3'-terminus (GenBank Accession No. EU144223) that included a partial nuclear inclusion protein, NIb, (1 to 637 nt) with the conserved amino acid (aa) replicase motif GDD (131 to 139 nt), the coat protein (CP) gene of 821 nt (638 to 1,459 nt), and a 171-nt untranslated region (1,460 to 1,630 nt) attached to a poly(A)tail. The CP sequence contained a NAG motif instead of the DAG motif commonly associated with aphid transmission. Searches in the NCBI GenBank database revealed that the CP aa and nt sequences contained conserved domains with isolates of Bean yellow mosaic virus (BYMV). A pairwise alignment (ClustalX) (4) of the CP aa from 20 BYMV isolates with the BYMV-Pullman isolate revealed identities from 96% (BYMV-S, U47033) to 88% (BYMV-MI [X81124)] -MI-NAT [AF434661]). This meets the species demarcation criteria of more than ~80% identity for inclusion with BYMV (1). Virion mechanical inoculations resulted in local lesions on Chenopodium amaranticolor Coste et Reyn and C. quinoa Willd., necrotic blotches on Phaseolus vulgaris L., and yellow spots and systemic movement in L. succulentus Douglas ex. K. Koch, L. texensis 'Bluebonnet', and L. texensis 'Maroon'; BYMV was confirmed by western blots and ELISA. The experimental inoculations represent the first documented report of BYMV in the annual L. succulentus and biennial L. texensis species. Since BYMV is seedborne and transmitted by many aphid species (3), it is possible that several lupine transplants escaped potyvirus detection, and secondary transmission of BYMV to plants occurred by aphids. During the 1950s, BYMV was confirmed in several annual lupines grown as crops in the southeastern United States (3). To our knowledge, this is the first report of BYMV occurring naturally in a lupine species in Washington. BYMV is a destructive virus to lupine species worldwide and has a wide host range in Fabaceae. This research directly contributes toward the maintenance of virus-free lupine seed for distribution to scientists focusing on lupine research. References: (1) P. H. Berger et al. Family Potyviridae. Page 819 in: Virus Taxonomy: Eighth Report of the ICTV. C. M. Fauquet et al. eds., 2005. (2) J. Chen et al. Arch. Virol. 146:757, 2001. (3) R. A. C. Jones and G. D. Mclean, Ann. Appl. Biol. 114:609, 1989. (4) J. D. Thompson et al. Nucleic Acids Res. 24:4878, 1997.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge