Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer biomarkers : section A of Disease markers 2013

Gene environment interaction in urinary bladder cancer with special reference to organochlorine pesticide: a case control study.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Tusha Sharma
Smita Jain
Ankur Verma
Nivedita Sharma
Sanjay Gupta
Vinod Kumar Arora
Basu Dev Banerjee

Anahtar kelimeler

Öz

Urinary bladder cancer (UBC) is a common disease worldwide with a higher incidence rate in developed countries. Organochlorine pesticides (OCPs), potent endocrine disrupters, are found to be associated with several cancers such as prostate, breast, bladder, etc. Glutathione S-transferase (GST) is a polymorphic supergene family involved in the detoxification of numerous environmental toxins including OCPs. The present study was carried out in UBC subjects (n=50) and healthy control subjects (n=50) with an aim to determine the role of GSTM1 and GSTT1 polymorphism and its implication on the OCP detoxification or bioaccumulation which may increase the risk of UBC in humans. This study was also designed to identify the "gene-environment interaction" specifically between gene polymorphism in xenobiotic metabolizing genetic enzyme(s) and blood OCP levels. GSTM1/GSTT1 gene polymorphism was analysed by using multiplex PCR. OCPs levels in whole blood were estimated by Gas chromatography equipped with electron capture detector. The results demonstrated a significant (p< 0.05) increase in frequency of GSTM1^{-}/GSTT1^{-} (null) genotype in UBC cases without interfering the distribution of other GSTT1/GSTM1 genotypes. The blood levels of alpha (α), Beta (β), Gamma (γ), total - Hexachlorcyclohexane (HCH) and para-para - dichlorodiphenyltrichloroetane (p,p'-DDT) were found to be significantly (p< 0.05) high in UBC cases as compared to controls. Multiple regression analysis revealed a significant interaction between β-HCH and GSTM1^{-} genotype (p< 0.05) as well as in β-HCH and GSTT1^{-} genotype (p< 0.05) respectively. These findings indicate that "gene-environment interaction" may play a key role in increasing the risk for UBC in individuals who are genetically more susceptible due to presence of GSTM1/GSTT1 null deletion during their routine encounter with or exposure to OCPs.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge