Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Molecular Sciences 2019-Mar

Interactive Curve-Linear Relationship Between Alteration of Carbohydrate Macromolecular Structure Traits in Hulless Barley (Hordeum vulgare L.) Grain and Nutrient Utilization, Biodegradation and Bioavailability.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Baoli Sun
Luciana Prates
Peiqiang Yu

Anahtar kelimeler

Öz

The aim of this study was to reveal an interactive curve-linear relationship between altered carbohydrate macromolecular structure traits of hulless barley cultivars and nutrient utilization, biodegradation, as well as bioavailability. The cultivars had different carbohydrate macromolecular traits, including amylose (A), amylopectin (AP), and β-glucan contents, as well as their ratios (A:AP). The parameters assessed included: (1) chemical and nutrient profiles; (2) protein and carbohydrate sub-fractions partitioned by the Cornell Net Carbohydrate and Protein System (CNCPS); (3) total digestible nutrients (TDN) and energy values; and (4) in situ rumen degradation kinetics of nutrients and truly absorbed nutrient supply. The hulless barley samples were analyzed for starch (ST), crude protein (CP), total soluble crude protein (SCP), etc. The in situ incubation technique was performed to evaluate the degradation kinetics of the nutrients, as well as the effective degradability (ED) and bypass nutrient (B). Results showed that the carbohydrates (g/kg DM) had a cubic relationship (p < 0.05), with the A:AP ratio and β-glucan level; while the starch level presented a quadratic relationship (p < 0.05), with the A:AP ratio and cubic relationship (p < 0.05), with β-glucan level. The CP and SCP contents had a cubic relationship (p < 0.05) with the A:AP ratio and β-glucan level. The altered carbohydrate macromolecular traits were observed to have strongly curve-linear correlations with protein and carbohydrate fractions partitioned by CNCPS. For the in situ protein degradation kinetics, there was a quadratic effect of A:AP ratio on the rumen undegraded protein (RUP, g/kg DM) and a linear effect of β-glucan on the bypass protein (BCP, g/kg DM). The A:AP ratio and β-glucan levels had quadratic effects (p < 0.05) on BCP and EDCP. For ST degradation kinetics, the ST degradation rate (Kd), BST and EDST showed cubic effects (p < 0.05) with A:AP ratio. The β-glucan level showed a cubic effect on EDST (g/kg DM) and a quadratic effect on BST (g/kg ST or g/kg DM) and EDST (g/kg DM). In conclusion, alteration of carbohydrate macromolecular traits in hulless barley significantly impacted nutrient utilization, metabolic characteristics, biodegradation, and bioavailability. Altered carbohydrate macromolecular traits curve-linearly affected the nutrient profiles, protein and carbohydrate fractions, total digestible nutrient, energy values, and in situ degradation kinetics.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge