Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Plant Science 2013

Internal Zn allocation influences Zn deficiency tolerance and grain Zn loading in rice (Oryza sativa L.).

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Somayanda M Impa
Anja Gramlich
Susan Tandy
Rainer Schulin
Emmanuel Frossard
Sarah E Johnson-Beebout

Anahtar kelimeler

Öz

One of the important factors that influences Zn deficiency tolerance and grain Zn loading in crops is the within-plant allocation of Zn. Three independent experiments were carried out to understand the internal Zn distribution patterns in rice genotypes grown in Zn-sufficient and Zn-deficient agar nutrient solution (ANS). In one of the experiments, two rice genotypes (IR55179 and KP) contrasting in Zn deficiency tolerance were leaf-labeled with (65)Zn. In the other two experiments, two Zn biofortification breeding lines (IR69428 and SWHOO) were either root- or leaf-labeled with (65)Zn. Rice genotype IR55179 showed significantly higher Zn deficiency tolerance than KP at 21 and 42 days after planting. When KP was Zn-deficient, it failed to translocate (65)Zn from the labeled leaf to newly emerging leaves. Similarly, the root-to-shoot translocation of unlabeled Zn was lower in KP than in IR55179. These results suggest that some Zn-efficient rice genotypes have greater ability to translocate Zn from older to actively growing tissues than genotypes sensitive to Zn deficiency. Among the two Zn biofortication breeding lines that were leaf-labeled with (65)Zn at 10 days before panicle initiation stage, (65)Zn distribution in the grains at maturity was similar between both genotypes in Zn-sufficient conditions. However, under Zn-deficient conditions, SWHOO accumulated significantly higher (65)Zn in grains than IR69428, indicating that SWHOO is a better remobilizer than IR69428. When the roots of these two Zn biofortication breeding lines were exposed to (65)Zn solution at 10 days after flowering, IR69428 showed higher root uptake of (65)Zn than SWHOO in Zn-sufficient conditions, but (65)Zn allocation in the aerial parts of the plant was similar between both genotypes.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge