Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2015-Nov

Methanol extracts of Xanthium sibiricum roots inhibit inflammatory responses via the inhibition of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) in murine macrophages.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
Anna Ju
Young-Chang Cho
Sayeon Cho

Anahtar kelimeler

Öz

BACKGROUND

Xanthium sibiricum has been used as a traditional Chinese medicine for the treatment of appendicitis, bronchitis, arthritis, and other inflammatory ailments. However, its pharmacological activity related to an anti-inflammatory effect remain unknown. This present study aims to investigate the anti-inflammatory effect of methanol extracts of X. sibiricum roots (MXS), and to further determine its underlying mechanism of action in order to assess the medicinal value of X. sibiricum roots.

METHODS

To assess the anti-inflammatory activity of MXS in lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages, the production of nitric oxide (NO) was measured using the Griess reagent system. The levels of pro-inflammatory cytokines and mediators were quantified using an Enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR). Subsequently, immunoblotting analyses were employed to detect inflammatory mediators as well as to elucidate the underlying regulatory mechanisms suppressed by MXS.

RESULTS

MXS inhibited LPS-stimulated NO production and inducible nitric oxide synthase (iNOS) expression in RAW 264.7 macrophages within the non-cytotoxic concentration range (50-400 μg/ml). In addition, mRNA and protein levels of pro-inflammatory cytokines such as interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were significantly suppressed by MXS at the concentration of 400 μg/ml. Furthermore, MXS (200 μg/ml) clearly reduced the phosphorylation levels of the inhibitor of kappa Bα (IκBα) and signal transducer and activator of transcription 3 (STAT3), without affecting changes in the phosphorylation levels of mitogen-activated protein kinases (MAPKs). When five major components (betulin, betulinic acid, β-sitosterol, stigmasterol, and scopoletin) of MXS were separately investigated, stigmasterol and β-sitosterol seemed to play major inhibitory roles in the LPS-induced production of inflammatory mediators such as NO, IL-6, and TNF-α.

CONCLUSIONS

Our results demonstrate that MXS has an anti-inflammatory property in LPS-stimulated RAW 264.7 macrophages, and its anti-inflammatory activity is exerted by the regulation of nuclear factor-κB (NF-κB) and STAT3 signaling pathways.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge