Turkish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biorheology 1989

Mucus transport in a miniaturized simulated cough machine: effect of constriction and serous layer simulant.

Sadece kayıtlı kullanıcılar makaleleri çevirebilir
Giriş yapmak kayıt olmak
Bağlantı panoya kaydedilir
M Agarwal
M King
B K Rubin
J B Shukla

Anahtar kelimeler

Öz

The transport of mucus gel simulant (MGS) in a constricted simulated cough machine, using blood plasma as a serous layer simulant (SLS), was investigated. MGS was prepared from locust bean gum solutions crosslinked with varying amounts of added borate to produce gels of varying spinnability (filance). The model trachea was a plexiglass channel of rectangular cross-section with the plane bottom surface. The upper surface included a sinusoidal protrusion which provided a flow convergence with minimum gaps of 6, 4 and 2 mm. Experiments for mucus transport were conducted for these minimum gaps, as well as for the non-convergent case (12 mm gap). Miniaturization of sample quantity was achieved by keeping the MGS layer depth constant (0.5 or 1 mm) but reducing the zone of loading from 13.4 cm to 1 cm, thus reducing the sample requirement to as little as 0.2 ml. MGS transport was determined as the minimum displacement of a line of marker dye placed in the MGS layer at the point of minimum constriction gap. It was shown that in all cases (dry as well as with SLS), MGS transport increased as the minimum constriction gap between the plane and the convergent top surface decreased. This increase was further enhanced if an SLS of lesser viscosity was used. It was also found that the transport of MGS increased as the depth of MGS layer increased or as the filance decreased in both non-constricted and constricted cases. The relationship between MGS transport and filance was maintained even in the presence of an SLS layer.

Facebook sayfamıza katılın

Bilim tarafından desteklenen en eksiksiz şifalı otlar veritabanı

  • 55 dilde çalışır
  • Bilim destekli bitkisel kürler
  • Görüntüye göre bitki tanıma
  • Etkileşimli GPS haritası - bölgedeki bitkileri etiketleyin (yakında)
  • Aramanızla ilgili bilimsel yayınları okuyun
  • Şifalı bitkileri etkilerine göre arayın
  • İlgi alanlarınızı düzenleyin ve haber araştırmaları, klinik denemeler ve patentlerle güncel kalın

Bir belirti veya hastalık yazın ve yardımcı olabilecek bitkiler hakkında bilgi edinin, bir bitki yazın ve karşı kullanıldığı hastalıkları ve semptomları görün.
* Tüm bilgiler yayınlanmış bilimsel araştırmalara dayanmaktadır

Google Play badgeApp Store badge